Dr. D. Sinden

CA-MATH-804: Numerical Analysis

Assignment Sheet 2. Due: March 27, 2022

Exercise 1 [5 Points]: Assuming $p, q = 1, 2, \infty, F$ recover the following table of equivalence constants c_{pq} such that $\forall A \in \mathbb{R}^{n \times n}$ we have $\|A\|_p \leq c_{pq} \|A\|_q$

c_{pq}	q = 1	q = 2	$q = \infty$	q = F
p = 1	1	\sqrt{n}	n	\sqrt{n}
p = 2	\sqrt{n}	1	\sqrt{n}	1
$p = \infty$	n	\sqrt{n}	1	\sqrt{n}
p = F	\sqrt{n}	\sqrt{n}	\sqrt{n}	1

Exercise 2 [5 Points]: For any square matrix $A \in \mathbb{R}^{n \times n}$, prove the following relations

- a) $\frac{1}{n}K_2(A) \le K_1(A) \le nK_2(A),$
- **b)** $\frac{1}{n}K_{\infty}(A) \leq K_2(A) \leq nK_{\infty}(A),$
- c) $\frac{1}{n^2}K_1(A) \le K_{\infty}(A) \le n^2 K_1(A),$

where $K_p(A) = \|A\|_p \|A^{-1}\|_p$. These relations show that if a matrix is ill-conditioned in a certain norm, it remains so even in another norm, up to a scaling factor.

Exercise 3 [5 Points]: Prove the following claims:

a) If $A \in \mathbb{R}^{n \times n}$ fulfils one of the following criteria:

- 1. strict row-sum criterion (strict diagonal dominance) $\sum_{\substack{i=1\\i\neq j}}^{n} |a_{ij}| < |a_{jj}|$ for all j with $1 \le j \le n$.
- 2. strict column-sum criterion $\sum_{\substack{i=1\\i\neq j}}^{n} |a_{ji}| < |a_{jj}|$ for all j with $1 \le j \le n$

then the Jacobi method converges for any initial guess $x^{(0)}$.

b) Let $A \in \mathbb{C}^{n \times n}$, then every eigenvalue λ of A fulfils one of the following inequalities

$$|\lambda - a_{ii}| \le \sum_{\substack{j=1\\j \ne i}}^n |a_{ij}|.$$

Exercise 4: A matrix in which the sum of the absolute values of the entries of a row is equal for every row, is called *row equilibrated*.

a) Show that every regular matrix A can be transformed into a row equilibrated matrix by multiplication with a regular diagonal matrix D.

b) Let A and D be as in a). Show that all non-singular diagonal matrices \tilde{D} have

$$K_{\infty}(DA) \le K_{\infty}\left(\tilde{D}A\right).$$

Hint: Let C = DA and find a lower estimate for the condition number of $\tilde{D}D^{-1}C$ in terms of the condition number of C.

Exercise 5: Prove Theorem 10 from class, which is repeated below.

Theorem. For $A, \delta A \in \mathbb{R}^{n \times n}$ and $b, \delta b \in \mathbb{R}^n$, consider perturbations of the problem Ax = b. Assume there exists $\gamma > 0$ such that

 $\|\delta A\| \le \gamma \|A\| \quad and \quad \|\delta b\| \le \gamma \|b\|$

in suitable norms. Also let $\gamma K(A) < 1$ where K(A) is the condition number of A in the norm used above. Then the perturbation δx of the solution fulfils

$$\frac{\|x\delta x\|}{\|x\|} \le \frac{1+\gamma K(A)}{1-\gamma K(A)} \quad and \quad \frac{\|\delta x\|}{\|x\|} \le \frac{2\gamma K(A)}{1-\gamma K(A)}.$$

Hints: Remember that $(A + \delta A)(x + \delta x) = b + \delta b$. Use

- compatibility (or consistency) of matrix/vector norms: $||Ax|| \le ||A|| ||x||$,
- sub-multiplicativity : $||AB|| \le ||A|| ||B||$

of the norms. Use a theorem from class which says something about the invertibility of Id + B for matrices B,

Theorem. Let $A \in \mathbb{R}^{n \times n}$, then

$$\lim_{k \to \infty} A^k = 0 \iff \rho(A) < 1$$

Moreover, the geometric series $\sum_{k=0}^{\infty} A^k$ is convergent if and only if $\rho(A) < 1$. Then

$$\sum_{k=0}^{\infty} A^k = (I - A)^{-1}$$

Then, if $\rho(A) < 1$, then I - A is invertible and

$$\frac{1}{1+\|A\|} \le \left\| (I-A)^{-1} \right\| \le \frac{1}{1-\|A\|}$$

where $\|\cdot\|$ is an induced matrix norm such that $\|A\| < 1$.