Dr. D. Sinden

CA-MATH-804: Numerical Analysis

Assignment Sheet 4. Due: May 20, 2022

Exercise 1 [5 Points]: Let $I_n(f) = \sum_{k=0}^n \alpha_k f(x_k)$ be a Lagrange quadrature formula on n+1 nodes. Compute the degree of exactness r for the formula

$$I_4(f) = \frac{1}{4} \left[f(-1) + 3f\left(-\frac{1}{3}\right) + 3f\left(\frac{1}{3}\right) + f(1) \right].$$

Exercise 2 [5 Points]: Let $I_w(f) = \int_0^1 w(x) f(x) dx$ with $w(x) = \sqrt{x}$ and let $Q(f) = \alpha f(x_1)$ be a quadrature formula approximating I_w . Find α and x_1 such that Q has maximum degree of exactness r.

Hint: The degree of exactness is maximum integer $r \ge 0$ for which $I_{w,n}(f) = I_w(f)$ for all $f \in \mathcal{P}_r$. Thus construct an arbitrary polynomial, f, for which the quadrature formula, given by Q is equal to I_w .

Exercise 3 [5 Points]: Prove that $G^{k}(x_{i}) = hG(x_{i}, x_{k})$, where G is the Green's function for the problem

$$u'' = f$$
 in $(0,1), u(x) = 0$ on $\{0,1\},$

and G^k its corresponding discrete counterpart.

Exercise 4 [3+3 Points]: Consider the matrix $A_{\rm fd} = h^{-2}$ tridiag(-1, 2, -1) which appears in the finite difference discretization of the second derivative.

- **a**) Show that $A_{\rm fd}$ is symmetric and positive definite
- **b**) Show that $A_{\rm fd}$ has $a_{ij} \leq 0$ for $i \neq j$ and all the entries of its inverse are non-negative.

Exercise 5 [3+3 Points]: Consider an equidistant grid with nodes x_i and grid-width h and a real valued function f with sufficient smoothness. Using Taylor series expansion show that

a)
$$|f'(x_i) - D_i^- f(x_i)| = \frac{h}{2} |f''(\xi)|$$
 for some $\xi \in (x_{i-1}, x_i)$,
b) $|f''(x_i) - D_i^{\pm} f(x_i)| = \frac{h^2}{24} |f''''(\xi_1) + f''''(\xi_2)|$ for some $\xi_1 \in (x_{i-1}, x_i), \xi_2 \in (x_i, x_{i+1})$.