Spring Semester 2024

Dr D. Sinden

JTMS-MAT-13: Numerical Methods

Assignment Sheet 4. Released: April 24, 2024 Due: May 02, 2024

Exercise 1 [4+3+3 Points]:

- (a) For computing f'(x), consider the forward differencing scheme and apply Richardson extrapolation to derive an estimate with quadratic error term in the step-size h.
- (b) Apply Richardson extrapolation to the estimate from (a) in order to derive an estimate with a better asymptotic error.
- (c) Apply the estimates from (a) and (b) and the forward differencing scheme itself to compute $f'(\pi)$ for a function $f(x) = \cos(x)$ and step size h = 0.3.

Exercise 2 [3+3+3+3 Points]:

Consider the measurement values $p_0 = 7$, $p_1 = 6$, and $p_2 = 8$ that have been obtained at the nodes $u_0 = 0$, $u_1 = \frac{\pi}{4}$, and $u_2 = \frac{\pi}{2}$. Assume that a function $p(u) = \alpha \cos(u) + \beta u$ is supposed to approximate these values in the least squares sense.

(a) Show that the normal equations are given by

$$\alpha \sum_{i=0}^{2} \cos^{2} (u_{i}) + \beta \sum_{i=0}^{2} u_{i} \cos (u_{i}) = \sum_{i=0}^{2} p_{i} \cos (u_{i}),$$
$$\alpha \sum_{i=0}^{2} u_{i} \cos (u_{i}) + \beta \sum_{i=0}^{2} u_{i}^{2} = \sum_{i=0}^{2} p_{i} u_{i}.$$

- (**b**) Solve the normal equations for α and β .
- (c) Compute the error in the L_2 sense that is minimized in (b). What is the solution and what is the error if the last measurement value is now $p_2 = 5$?
- (d) Do the same computations, but for the linear function $p_l(u) = \alpha u + \beta$ and compute the error in the L_2 sense. Is (b) or (c) the better approximation for this data set?

Exercise 3 [3 Points]:

Consider the function $f(x) = e^{x^2+1}$ and the set of equally spaced nodes 0, 0.25, 0.5, 0.75, 1. The Newton form of a polynomial interpolant is given by

$$p_n\left(x\right) = \sum_{i=0}^n a_i n_i\left(x\right)$$

where the first polynomial is given by $n_0(x) = 1$ and

$$n_i(x) = (x - x_0)(x - x_1)\dots(x - x_{i-1})$$
 for $i > 0$.

(a) Derive the polynomial $p_n(x)$ in Newton form that interpolates f(x) at the given nodes.

Exercise 4 [2+3+2 Points]:

Consider the B-splines over the nodes $u_i \in \{0, 1, 2\}$, where i = 0, 1, 2.

- (a) Sketch the B-splines $N_1^0(u)$ and $N_1^1(u)$.
- (b) Use the recursive formulation of splines

$$N_i^0(u) = 1$$
 if $u \in [u_i, u_{i+1})$ and 0 else,

and

$$N_i^n(u) = \alpha_i^{n-1}(u)N_i^{n-1}(u) + \left(1 - \alpha_{i+1}^{n-1}(u)\right)N_{i+1}^{n-1}(u) \quad \text{with} \quad \alpha_i^{n-1}(u) = \frac{u - u_i}{u_{i+n} - u_i}$$

to compute the necessary splines for a linear spline interpolant with n = 1.

Compute the collocation matrix and solve the system of linear equations $s(u_i) = \sum_i c_i N_i^1(u_i)$ for the values $p_i \in \{5, -2, 2\}$. Where necessary, use for the external nodes $u_{-1} = -1$ and $u_3 = 3$ to construct the splines.

(c) Interpolate at s(1.5).