Dr D. Sinden

Calculus and Linear Algebra for Graduate Students MDE-MET-01

Assignment Sheet 2. Released: October 2, 2024 Due: October 12, 2024

- 1. [5 points] A bat and a ball cost 1.10€ in total. The bat costs 1.00€ more than the ball. By solving the system of linear equations, find how much both cost.
- 2. [5+5 points] True or false (give a reason if true or a counterexample if false):
 - (a) If \boldsymbol{u} is perpendicular (in three dimensions) to \boldsymbol{v} and \boldsymbol{w} , then \boldsymbol{v} and \boldsymbol{w} are parallel
 - (b) If \boldsymbol{u} is perpendicular to \boldsymbol{v} and \boldsymbol{w} , then \boldsymbol{u} is perpendicular to $\boldsymbol{v} + 2\boldsymbol{w}$
- 3. [5 points] Find two non-zero vectors that are perpendicular to $(1,0,1)^T$ and to each other.
- 4. [5+5 points] If ||v|| = 5 and ||w|| = 3, what are the smallest and largest possible values of the following expressions?
 - (a) $\| \boldsymbol{v} \boldsymbol{w} \|$
 - (b) $\boldsymbol{v} \cdot \boldsymbol{w}$
- 5. [5+5 points] Suppose A is a 3×3 matrix with ones for every entry.
 - (a) Find two independent vectors \boldsymbol{x} and \boldsymbol{y} that solve $A\boldsymbol{x} = \boldsymbol{0}$ and $A\boldsymbol{y} = \boldsymbol{0}$. Write that first equation $A\boldsymbol{x} = \boldsymbol{0}$ (with numbers) as a combination of the columns of A.
 - (b) Why is there no third vector, \boldsymbol{z} with $A\boldsymbol{z} = \boldsymbol{0}$, which is independent of \boldsymbol{x} and \boldsymbol{y} ?
- 6. $[5+5 \text{ points}] \text{ A } 2 \times 2 \text{ matrix of the form}$

$$R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}, \quad \text{where } \alpha \in \mathbb{R},$$

is called a *rotation matrix*.

- (a) Show that multiplication by this matrix rotates vectors counter-clockwise by angle α .
- (b) Furthermore, show that $R_{-\alpha}R_{\alpha} = R_{\alpha}R_{-\alpha} = I$

Hint: Express a vector $\boldsymbol{x} \in \mathbb{R}^2$ in polar coordinates, that is $\boldsymbol{x} = r \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}$. Then compute $A\boldsymbol{x}$ and use appropriate trigonometric identities.