Constructor University

Dr D. Sinden

Calculus and Linear Algebra for Graduate Students MDE-MET-01

Assignment Sheet 4. Released: November 4, 2024 Due: November 14, 2024

- 1. [5 points] An $n \times n$ matrix is invertible, if and only if it has rank n. Explain why this is true.
- 2. [5 points] If an $m \times n$ matrix has rank r, then it has an $r \times r$ submatrix S that is invertible. Remove m r rows and n r columns to find an invertible submatrix inside A, B and C.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

3. [5+5 points] Find the inverses of the given matrices, if they exist.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & 2 & 3 \end{pmatrix}.$$

4. [5 points] Find the orthogonal projection of the vector **b** onto the line through **a** where

$$\mathbf{b} = \begin{pmatrix} 1\\2\\2 \end{pmatrix}$$
 and $\mathbf{a} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$.

- 5. [5 points] Project $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ onto the lines through $\mathbf{a}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{a}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Draw the projections \mathbf{p}_1 and \mathbf{p}_2 and add $\mathbf{p}_1 + \mathbf{p}_2$. Observe that the projections do not add to \mathbf{b} , because \mathbf{a}_1 and \mathbf{a}_2 are not orthogonal.
- 6. [5 points] Find the vector \mathbf{x} that is the reflection of the vector \mathbf{y} about the line through \mathbf{a} .

$$\mathbf{y} = \begin{pmatrix} 1\\ 1 \end{pmatrix}$$
 and $\mathbf{a} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$.

7. [5 points] Check that the vectors

$$\mathbf{a}_1 = \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$$
 and $\mathbf{a}_2 = \begin{pmatrix} -1\\-2\\-5 \end{pmatrix}$

are orthogonal and then find the projection of the vector $\mathbf{x} = (2, 2, 2)^T$ onto the plane spanned by \mathbf{a}_1 and \mathbf{a}_2 . Is it important for your method that \mathbf{a}_1 and \mathbf{a}_2 are orthogonal?

- 8. [5 + 5 points]
 - (a) Gram-Schmidt: Find orthonormal vectors \mathbf{q}_1 and \mathbf{q}_2 in the plane spanned by

1.5

$$\mathbf{a} = \begin{pmatrix} 1\\3\\4\\5\\7 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} -6\\6\\8\\0\\8 \end{pmatrix}.$$
sest to
$$\begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}?$$

/ ->

(b) Which vector in this plane is closest to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$