Nonlinear Equations
Root Finding
Bisection Method
The bisection method, when applied in the interval $\left[a, b\right]$ to a function $f \in C^0 \left( \left[a, b\right] \right)$ with ${f(a)f(b) < 0}$
Bisect the interval into two subintervals $\left[a, c\right]$ and $\left[c, b\right]$ such that ${a < c < b}$.
- If $f(c) = 0$ or is sufficiently close, then $c$ is a root
- Else, if $f(c)f(a) < 0$ continue in the interval $[a, c]$
- Else, if $f(c)f(b) < 0$ continue in the interval $[c, b]$
The bisection method, when applied in the interval $[a,b]$ to a function $f \in C^0 \left( \left[a, b\right] \right)$ with ${f(a)f(b) < 0}$ will compute, after $n$ steps, an approximation $c_n$ of the root $r$ with error
$$ \left\| r - c_n \right\| \lt \dfrac{b-a}{2n}. $$Newton’s Method
Let a function $f \in C^1 \left( \left[a, b \right] \right)$, then for an initial guess $x_0$, Newton’s method is
$$ x_{n+1} = x_n - \dfrac{f\left( x_n \right)}{f\left( x_n \right)}. $$Let $f \in C^1\left( \left[ a, b\right] \right)$, with
- $f(a)f(b) < 0$
- $f^\prime\left(x\right) \ne 0$ for all $x \in \left( a, b \right)$
- $f^{\prime\prime}\left(x\right) $ exists, is continuous and either ${f^{\prime\prime}\left(x\right) > 0}$ or ${f^{\prime\prime}\left(x\right) < 0}$ for all ${x \in \left( a, b \right)}$.
Then $f(x)=0$ has exactly one root, $r$, in the interval and the sequence generated by Newton iterations converges to the root when the initial guess is chosen according to
- if $f(a) < 0$ and $f^{\prime\prime}(a) < 0$ or $f(a) > 0$ and $f^{\prime\prime}(a) > 0$ then $x \in \left[ a, r \right]$
or
- if $f(a) < 0$ and $f^{\prime\prime}(a) > 0$ or $f(a) > 0$ and $f^{\prime\prime}(a) < 0$ then $x \in \left[ r, b \right]$.
The iterate in the sequence satisfies
$$ \left\| x_n - r\right\| \lt \dfrac{f\left( x_n \right)}{\min \limits_{x \in [a,b]}\left\| f^{\prime}\left( x \right) \right\|}. $$Let $f \in C^1\left( \left[ a, b\right] \right)$, with
- $f(a)f(b) < 0$
- $f^\prime\left( x \right) \ne 0$ for all $x \in \left( a, b \right)$
- $f^{\prime\prime}\left( x \right)$ exists and is continuous, i.e. ${f\left( x \right) \in C^2\left( \left[ a, b \right]\right)}$
Then, if $x_0$ is close enough to the root $r$, Newton’s method converges quadratically.
Secant Methods
The secant method is defined as
$$ x_{n+1} = x_n - f \left( x_n \right) \dfrac{x_{n-1} - x_n}{f \left( x_{n-1} \right) - f \left( x_n \right)}. $$Let $f \in C^2\left( \left[a, b\right] \right)$, and $r \in \left(a,b\right)$ such that ${f\left(r\right) = 0}$ and ${f^{\prime}\left(r\right) \ne 0}$. Furthermore, let
$$ x_{n+1} = x_n - f \left( x_n \right) \dfrac{x_{n-1} - x_n}{f \left( x_{n-1} \right) - f \left( x_n \right)}. $$Then there exists a $\delta > 0$ such that when ${\left\| r - x_0 \right\| < \delta}$ and ${\left\| r - x_1 \right\| < \delta}$, then the following holds:
- $\lim\limits_{n\rightarrow\infty} \left\| r - x_n \right\| = 0 \Leftrightarrow \lim\limits_{n\rightarrow\infty} x_n = r$, and
- $\left\| r - x_{n+1} \right\| \le \mu \left\| r - x_{n} \right\|^{\alpha}$ with ${\alpha =\dfrac{1+\sqrt{5}}{2} }.$
Convergence
If a sequence $x_n$ converges to $r$ as $n \rightarrow \infty$, then it is said to converge linearly if there exists a $\mu \in \left( 0,1\right)$ such that
$$ \lim\limits_{n\rightarrow\infty} \dfrac{\left\| x_{n+1} - r \right\|}{\left\| x_{n} - r \right\|} = \mu. $$The sequences converges super-linearly if
$$ \lim\limits_{n\rightarrow\infty} \dfrac{\left\| x_{n+1} - r \right\|}{\left\| x_{n} - r \right\|} = 0 $$and sub-linearly if
$$ \lim\limits_{n\rightarrow\infty} \dfrac{\left\| x_{n+1} - r \right\|}{\left\| x_{n} - r \right\|} = 1. $$More generally, a sequence converges with order $q$ if there exists a ${\mu \gt 0}$ such that
$$ \lim\limits_{n\rightarrow\infty} \dfrac{\left\| x_{n+1} - r \right\|}{\left\| x_{n} - r \right\|^q } = \mu $$Thus a sequence is said to converge quadratically when ${q=2}$ and exhibit cubic convergence when $q=3$.
Method | Regularity | Proximity to $r$ | Initial points | Function calls | Convergence |
---|---|---|---|---|---|
Bisection | $\mathcal{C}^{0}$ | No | 2 | 1 | Linear |
Newton | $\mathcal{C}^{2}$ | Yes | 1 | 2 | Quadratic |
Secant | $\mathcal{C}^{2}$ | Yes | 1 | 1 | Superlinear |
Systems of Nonlinear Equation
For a vector-valued function $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$, which takes as an argument the vector
$$ x= \left( x_1, x_2 \ldots, x_n \right) \in \mathbb{R}^n $$the Jacobian matrix is defined as
$$ \begin{equation*} J = \left( \begin{array}{cccc} \dfrac{\partial f_1 }{\partial x_1} & \dfrac{\partial f_1 }{\partial x_2} & \cdots & \dfrac{\partial f_1 }{\partial x_n} \\\ \dfrac{\partial f_2 }{\partial x_1} & & & \vdots \\\ \vdots & & & \vdots \\\ \dfrac{\partial f_n }{\partial x_1} & \dfrac{\partial f_n }{\partial x_2} & \cdots & \dfrac{\partial f_n }{\partial x_n} \end{array} \right) \in \mathbb{R}^{n \times n}. \end{equation*} $$If the derivatives are evaluated at the vector $x$, the Jacobian matrix can be parameterised as $J\left(x\right)$. Newton’s method can be written as
$$ x_{m+1} = x_m - J^{-1} \left( x_m \right) f\left( x_m \right) $$where $J^{-1} \left( x_m \right)$ is the inverse of the Jacobian matrix evaluated at the vector $x_m$, which is the $m$th iterate of the scheme. In practice, as matrix inversion can be computationally expensive, the system
$$ J \left( x_m \right) \left( x_{m+1} - x_m \right) = -f \left( x_m \right) $$is solved for the unknown vector $x_{m+1} - x_m$ and then $x_{m+1}$ is found.