Taylor Series
The Taylor series, or Taylor expansion of a function, is defined as
Definition: Taylor Series
$$
\begin{equation*}
\sum\limits_{k=0}^{\infty} \dfrac{ f^{(k)} \left( c \right) }{k!} \left( x - c \right)^{k}.
\end{equation*}
$$
This is a power series, which is convergent for some radius.
Theorem: Taylor's Theorem
$$
\begin{equation*}
f\left( x \right) = \sum\limits_{k=0}^{n} \dfrac{f^{(k)} \left(c\right) }{k!} \left( x- c \right)^{k} + \dfrac{f^{(n+1)} \left( \xi \right) }{\left( n + 1 \right)!} \left( x - c \right)^{n+1}
\end{equation*}
$$$$
\begin{equation*}
\lim\limits_{\xi \rightarrow c} \dfrac{ f^{(n+1)} \left( \xi \right) }{ \left( n + 1 \right)!} \left( x - c \right)^{n+1} = 0.
\end{equation*}
$$
An .ipynb notebook with an example of the Taylor series for $\sin\left(x\right)$ can be accessed online [here].
It can be downloaded from [here] as a python file or downloaded as a notebook from [here].
Theorem: Mean Value Theorem
$$
f^\prime (c) = \dfrac{f(b) - f(a)}{b - a}.
$$