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Constructor University Spring Semester 2024

Dr. D. Sinden

JTMS-MAT-13: Numerical Methods
Exam: Thursday 23 May 2024

All questions carry equal marks. Answer 5 questions only. Please use the booklet provided.

All trigonometric values are in radians.

Question 1:

(a) For the function f(x) = (x + 1/2) cos (x), show that Newton’s method is

xk+1 = xk −
(xk + 1/2) cos (xk)

cos (xk) − (xk + 1/2) sin (xk)
.

(b) From the definition of Newton’s method, show that the secant method is given by

xk+1 = xk − f (xk)
xk−1 − xk

f (xk−1) − f (xk)
.

(c) Compute two iterates of the Newton method with initial guess x0 = −1/3.

(d) Compute two iterates of the secant method with initial guess x0 = −1/3 and x1 = −0.4.

(a) Newton’s method is

xk+1 = xk −
f(xk)
f ′(xk)

,

so for the function given, the derivative is

f ′(x) = cos(x) + (x + 1

2
) (− sin(x))

= cos(x) − (x + 1

2
) sin(x).

Thus, the formula for Newton iterates is given by

xk+1 = xk −
(xk + 1

2
) cos(xk)

cos(xk) − (xk + 1
2
) sin(xk)

.

(b) The secant method uses an approximation of the derivative

f ′(xk) ≈
f (xk) − f (xk−1)

xk − xk−1

which can be substituting into Newton’s method, yielding

xk+1 = xk − f (xk)
xk−1 − xk

f (xk−1) − f (xk)
.
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(c) First iteration: x1, calculate f(x0):

f(x0) = (−
1

3
+ 1

2
) cos(−1

3
) = (1

6
) cos(−1

3
)

Since cos(x) is an even function, cos(−x) = cos(x):

f(x0) =
1

6
cos(1

3
)

Calculate f ′(x0):

f ′(x0) = cos(−
1

3
) − (−1

3
+ 1

2
) sin(−1

3
)

= cos(1
3
) + 1

6
sin(1

3
)

Thus, we can compute x1 as

x1 = x0 −
f (x0)
f ′ (x0)

= −1
3
−

1
6
cos (1

3
)

cos (1
3
) + 1

6
sin (1

3
)

Numerically evaluating the trigonometric functions, with cos (1
3
) ≈ 0.87758256 and sin (1

3
) ≈ 0.32719470, thus

x1 ≈ −
1

3
− 0.15749282438578963

0.9994893957807631
− 0.490906615301735

Second iteration for x2, using the updated x1 ≈ −0.491, and calculating f(x1):

f(x1) = (x1 +
1

2
) cos(x1) = (−0.491 + 0.5) cos(−0.491)

= (0.009) cos(−0.491)
= 0.009 cos(0.491)
= 0.008019508883621638

Calculate f ′(x1):

f ′(x1) = cos(x1) − (x1 +
1

2
) sin(x1)

= cos(−0.491) − (−0.491 + 0.5) sin(−0.491)
= cos(0.491) − (0.009) sin(0.491)
= 0.8861926740400325

Compute x2:

x2 = −0.491 −
0.008019508883621638

0.8861926740400325
= −0.4999560118026808

which is 0.500 to three significant figures.

(d) Having computed f(x0), then with cos(0.4) = 0.921, f(x1) is given by:

f(x1) = (−0.4 + 0.5) cos(−0.4)
= 0.1 cos(0.4)
= 0.1 × 0.921
= 0.0921
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Substitute x0 = −0.33333, x1 = −0.4, f(x0) = 0.15733, and f(x1) = 0.0921, thus

x2 = −0.4 −
0.0921(−0.4 + 0.33333)

0.0921 − 0.15733

= −0.4 − 0.0921 × (−0.06667)
−0.06523

= −0.4 − −0.00614
−0.06523

= −0.4 − 0.094
= −0.494

Using the updated x1 = −0.4 and x2 ≈ −0.494, evaluating the function yields

f(x2) = (−0.494 + 0.5) cos(−0.494)
= 0.006 cos(0.494)
= 0.006 × 0.880
= 0.00528.

Using the formula for the secant method:

x3 = −0.494 −
0.00528(−0.494 + 0.4)

0.00528 − 0.0921

= −0.494 − 0.00528 × (−0.094)
−0.08682

= −0.494 − −0.000496
−0.08682

= −0.494 − 0.0057
≈ −0.500.
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Question 2:

Consider the linear ordinary differential equation

y′′(t) = −4y′(t) + y(t) with y(0) = 1 and y′(0) = 1.

(a) By converting this 2nd order ordinary differential equation into a system of two coupled first order
ODEs, one in y(t) and one in y′(t), show the system can be written as a vector-valued ordinary
differential equation in v⃗(t) = (y(t), y′(t))T , in the form f (v⃗) = Av⃗ where

A = ( 0 1
1 −4 ) .

(b) Show that the forward Euler method can be written as

u⃗n+1 = (I + hA) u⃗n

for some approximation u⃗ ∈ R2, and provide the full system for u⃗n+1 for the ODE presented above.

(c) Show that the backward Euler method yields

u⃗n+1 =
1

1 + 4h − h2
( 1 + 4h −h
−h 1

) u⃗n.

(d) Calculate approximations y(0.3) and y′(0.3) using forward Euler method with h = 0.15.

(e) Calculate y(0.3) and y′(0.3) using backward Euler method with h = 0.15.

(a) Splitting yields, y′ = w, and v′ = −4w + y, which can be expressed as the linear system

( y
w
)
′

= ( 0 1
1 −4 )(

y
w
)

which, for the vector v⃗ = (y,w)T , is a linear differential equation v⃗′ = f (v⃗) = Av⃗, with the matrix A as given.

(b) The forward Euler method is un+1 = un+hf(un), which for the function f (v⃗n) = Av⃗n, where v⃗n = (yn,wn)T ,
yields v⃗n+1 = v⃗n + hAv⃗n, which can be factorized as v⃗n+1 = (I + hA) v⃗n.

(c) The backwards Euler scheme is given by un+1 = un+f(un+1), i.e. v⃗n+1 = v⃗n+hAv⃗n+1. Thus, (I−hA)v⃗n+1 = v⃗n,
so that v⃗n+1 = (I − hA)−1 v⃗n. The inverse of the matrix is then given by

(I − hA)−1 = (( 1 0
0 1

) − h( 0 1
1 −4 ))

−1

= ( 1 −h
−h 1 + 4h )

−1

= 1

1 + 4h − h2
( 1 + 4h −h
−h 1

) .

(d) With step size h = 0.15, then two steps, u⃗1 and u⃗2, must be computed from the initial data u⃗0 = (0,1).
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Using the matrix derived in the formula given, the solution at t = 0.15 is given by

u⃗1 = (I + hA) u⃗0

= ( 1 0
0 1

) + 0.15( 0 1
1 −4 )(

0
1
)

= ( 1 0.15
1 1 − 4 × 0.15 )(

0
1
)

= ( 1 0.15
0.15 1 − 0.6 )(

0
1
)

= ( 1 0.15
0.15 0.4

)( 0
1
)

= ( 0.15
0.4

)

Using the matrix and value derived above, the next step is given by

u⃗2 = (I + hA) u⃗1

= ( 1 0.15
0.15 0.4

)( 0.15
0.4

)

= ( 0.15
0.4

)

= ( 0.15 + 0.4 × 0.15
0.15 × 0.15 + 0.4 × 0.4 )

= ( 0.75
0.0255 + 0.16 )

= ( 0.75
0.1825

)

(e) With step size h = 0.15, then two steps, u⃗1 and u⃗2, must be computed from the initial data u⃗0 = (0,1). Using
the matrix derived in the formula given, the solution at t = 0.15 is given by

u⃗1 =
1

1 + 4 × 0.15 − 0.152
( 1 + 4 × 0.15 −0.15

−0.15 1
)( 0

1
)

= 10000

1825
( 1.6 −0.15
−0.15 1

)( 0
1
)

= 100

1825
( 160 −15
−15 100

)( 0
1
)

= 100

1825
( 160 −15
−15 100

)

= ( −15 × 100/1825
100 × 100/1825 )

= ( −0.821917808219178
5.47945205479452

) .

The second step is then given by

u⃗2 =
100

1825
( 160 −15
−15 100

)( −0.821917808219178
5.47945205479452

) .
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Question 3:

(a) What is meant if a matrix is said to be diagonally dominant?

(b) Give a definition for a positive definite matrix.

(c) What is the range of ω for which the method of successive over relaxation converges for a semi-positive
definite matrix?

(d) Show that the matrix

A =
⎛
⎜
⎝

4 3 0
3 4 −1
0 −1 4

⎞
⎟
⎠

has eigenvalues λ = 4, 4+
√
10 and 4−

√
10, and thus is can be inverted using the method of successive

over relaxation.

(a) A matrix is diagonally dominant if, for each row of the matrix, the magnitude of the diagonal element in
that row is greater than or equal to the sum of the magnitudes of all the other (non-diagonal) elements in that
row.

(b) A positive definite matrix is a symmetric matrix A (i.e., A = AT ) with the property that for any non-zero
vector x, the quadratic form xTAx > 0 is positive. Equivalent definitions are that all eigenvalues of a positive
definite matrix are positive or all the leading principal minors (that is, the determinants of the leading principal
submatrices) of a positive definite matrix are also positive.

(c) For a semi-positive definite matrix, the optimal range of ω ensuring convergence is: 0 < ω < 2.

(b) The characteristic polynomial in λ can be found via

det(A − λI) =
RRRRRRRRRRRRR

4 − λ 3 0
3 4 − λ −1
0 −1 4 − λ

RRRRRRRRRRRRR
= 0.

Calculating the determinant by expanding along the first row:

det(A − λI) = (4 − λ) ∣4 − λ −1
−1 4 − λ∣ − 3 ∣

3 −1
0 4 − λ∣ = 0.

Calculate the 2 × 2 determinants:

∣4 − λ −1
−1 4 − λ∣ = (4 − λ)(4 − λ) − (−1)(−1) = (4 − λ)

2 − 1

and

∣3 −1
0 4 − λ∣ = 3(4 − λ) − (−1)(0) = 3(4 − λ).

Substitute back:

det(A − λI) = (4 − λ)((4 − λ)2 − 1) − 3 ⋅ 3(4 − λ)
= (4 − λ)((4 − λ)2 − 1) − 9(4 − λ)
= (4 − λ)((4 − λ)2 − 10).

Set the determinant to zero, (4 − λ)((4 − λ)2 − 10) = 0, to solve for the eigenvalues yield λ = 4, λ = 4 +
√
10, and

λ = 4 −
√
10.
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Question 4:

(a) Show, by constructing an cubic polynomial, q(x), which is orthogonal to 1, x and x2, i.e.

∫
1

−1
xiq(x)dx = 0 for i = 0,1,2

that the Gauss nodes for Gaussian quadrature are x∗i = −
√

3

5
, 0,
√

3

5
.

(b) Show that the Lagrange polynomials for the function

f(x) = 3x cos(x)

which generates the data

i 0 1 2
xi −π/4 0 π/4
yi − 3π

4
√
2

0 3π

4
√
2

are
l0 =

8

π2
x (x − π/4) , l1 = −

16

π2
(x2 − π2/16) and l2 =

8

π2
x (x + π/4) .

(c) Thus, using Ai = ∫
1
−1 li(x)dx, show that the approximation for the integral yields

1

∫
−1

f(x)dx ≈
2

∑
i=0

Aif (x∗i ) = 0.

(a) To show that the Gauss nodes for Gaussian quadrature are x∗i = −
√

3

5
, 0,
√

3

5
, we need to find a cubic

polynomial q(x) which is orthogonal to 1, x, and x2 over the interval [−1,1]. This means we require:

∫
1

−1
q(x)dx = 0 ∫

1

−1
xq(x)dx = 0 and ∫

1

−1
x2q(x)dx = 0.

Let q(x) = x(x2 −a). We choose this form because it is a cubic polynomial and we will determine the value of a
that satisfies the orthogonality conditions. Now, we need to compute the integrals. Firstly, compute ∫

1
−1 q(x)dx:

∫
1

−1
x(x2 − a)dx = ∫

1

−1
(x3 − ax)dx

Since x3 and x are odd functions, their integrals over symmetric limits around zero are zero, i.e.

∫
1

−1
x3 dx = 0 and ∫

1

−1
axdx = 0

Thus,

∫
1

−1
(x3 − ax)dx = 0 − 0 = 0

Compute ∫
1
−1 xq(x)dx:

∫
1

−1
x(x(x2 − a))dx = ∫

1

−1
(x4 − ax2)dx

As
∫

1

−1
x4 dx = 2

5
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and
∫

1

−1
x2 dx = 2

3

Thus we have,

∫
1

−1
(x4 − ax2)dx = 2

5
− a ⋅ 2

3
= 0

so solving for a yields
2

5
− a ⋅ 2

3
= 0 ⇒ a = 2

5
⋅ 3
2
= 3

5
.

Thus, the polynomial q(x) is:

We have constructed the polynomial q(x). Now, we need to find the roots of q(x) = 0 to determine the Gauss
nodes, i.e. x(x2 − 3

5
) = 0, which gives x = 0 and x = ±

√
3
5
.

(b) The Lagrange polynomial for a given set of data points (xi, yi) is given by:

li(x) = ∏
0≤j≤2
j≠i

x − xj

xi − xj

Given data points:
i 0 1 2
xi −π

4
0 π

4
yi − 3π

4
√
2

0 3π

4
√
2

Let’s calculate each li(x). Firstly l0(x)

l0(x) =
x − x1

x0 − x1
⋅ x − x2

x0 − x2

Substitute the values:

l0(x) =
x − 0
−π

4
− 0
⋅
x − π

4

−π
4
− π

4

= x

−π
4

⋅
x − π

4

−π
2

= x

−π
4

⋅
x − π

4

−π
2

= 4x

π
⋅
2 (x − π

4
)

π

= 8

π2
x(x − π

4
)

Similarly, for l1,
l1(x) =

x − x0

x1 − x0
⋅ x − x2

x1 − x2
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Substitute the values:

l1(x) =
x − (−π

4
)

0 − (−π
4
)
⋅
x − π

4

0 − π
4

=
x + π

4
π
4

⋅
x − π

4

−π
4

=
4(x + π

4
)

π
⋅
4(x − π

4
)

−π

=
16(x + π

4
)(x − π

4
)

−π2

= −16
π2
(x2 − (π

4
)
2

)

= −16
π2
(x2 − π2

16
) .

Finally,
l2(x) =

x − x0

x2 − x0
⋅ x − x1

x2 − x1

Substitute the values:

l2(x) =
x − (−π

4
)

π
4
− (−π

4
)
⋅ x − 0π

4
− 0

=
x + π

4
π
2

⋅ xπ
4

=
2 (x + π

4
)

π
⋅ 4x
π

= 8

π2
x(x + π

4
)

Thus, the Lagrange polynomials are:

l0(x) =
8

π2
x(x − π

4
) ,

l1(x) = −
16

π2
(x2 − π2

16
) and

l2(x) =
8

π2
x(x + π

4
) .

(c) Compute the coefficients Ai, which are the integrals of the Lagrange polynomials over the interval [−1,1]:

Ai = ∫
1

−1
li(x)dx.

Firstly, A0 is given by
A0 = ∫

1

−1

8

π2
x(x − π

4
) dx = 8

π2 ∫
1

−1
(x2 − π

4
x) dx

Note that since ∫
1
−1 xdx = 0 (odd function over a symmetric interval), then

A0 =
8

π2
(∫

1

−1
x2 dx − π

4
∫

1

−1
xdx)

= 8

π2 ∫
1

−1
x2 dx

= 8

π2
⋅ 2
3

= 16

3π2
.
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Calculating A1

A1 = ∫
1

−1
−16
π2
(x2 − π2

16
) dx

= −16
π2
(∫

1

−1
x2 dx − π2

16
∫

1

−1
1dx)

= −16
π2
(2
3
− π2

16
⋅ 2)

= 2 − 32

3π2

Calculating A2

A2 = ∫
1

−1

8

π2
x(x + π

4
) dx = 8

π2 ∫
1

−1
(x2 + π

4
x) dx

Since ∫
1
−1 xdx = 0, (as before, integrating an odd function over a symmetric interval):

A2 =
8

π2
(∫

1

−1
x2 dx + π

4
∫

1

−1
xdx)

= 8

π2 ∫
1

−1
x2 dx

= 8

π2
⋅ 2
3

= 16

3π2

The approximation for the integral is given by:

∫
1

−1
f(x)dx ≈

2

∑
i=0

Aif(xi)

which, given the data:
f(x0) = −

3π

4
√
2
, f(x1) = 0, and f(x2) =

3π

4
√
2

yields

∫
1

−1
f(x)dx ≈ A0f(x0) +A1f(x1) +A2f(x2)

= 16

3π2
(− 3π

4
√
2
) + (2 − 32

3π2
) (0) + 16

3π2
( 3π

4
√
2
) .

Notice that f(x0) = −f(x2), so that

∫
1

−1
f(x)dx ≈ 16

3π2
(− 3π

4
√
2
+ 3π

4
√
2
)

= 0
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Question 5: Given the following data:

i 0 1 2
xi 0 1 3
yi 1 3 2

Using polynomial interpolation, what is the value of y(2)?

◯ y(2) = 3/2

◯ y(2) = 11/4

◯ y(2) = 3/4

◯ y(2) = 4/9

◯7 y(2) = 10/3

◯ y(2) = 0

To find the value of y(2) using polynomial interpolation, we can use either the Lagrange interpolation
formula or Newton’s formula.

The Lagrange interpolation polynomial for the given set of data points (xi, yi) is given by:

P (x) =
n

∑
i=0

yili(x)

where li(x) are the Lagrange basis polynomials defined as:

li(x) = ∏
0≤j≤n
j≠i

x − xj

xi − xj
.

Given data points:
i 0 1 2
xi 0 1 3
yi 1 3 2

We have n = 2, so we need to compute l0(x), l1(x) and l2(x). Calculating l0(x)

l0(x) =
x − x1

x0 − x1
⋅ x − x2

x0 − x2

= x − 1
0 − 1

⋅ x − 3
0 − 3

= −(x − 1)
1

⋅ −(x − 3)
3

= (1 − x) ⋅ (3 − x
3
)

= (1 − x)(3 − x)
3

= 3 − x − 3x + x2

3

= x2 − 4x + 3
3

Calculating l1(x)

l1(x) =
x − x0

x1 − x0
⋅ x − x2

x1 − x2

= x − 0
1 − 0

⋅ x − 3
1 − 3

= x ⋅ x − 3
−2

= x ⋅ (3 − x
2
)

= x(3 − x)
2
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Lastly, calculating l2(x)

l2(x) =
x − x0

x2 − x0
⋅ x − x1

x2 − x1

= x − 0
3 − 0

⋅ x − 1
3 − 1

= x

3
⋅ x − 1

2

= x(x − 1)
6

Constructing the interpolation polynomial P (x)

P (x) = y0l0(x) + y1l1(x) + y2l2(x)
= 1 ⋅ l0(x) + 3 ⋅ l1(x) + 2 ⋅ l2(x)

= 1 ⋅ x
2 − 4x + 3

3
+ 3 ⋅ 3x − x

2

2
+ 2 ⋅ x

2 − x
6

= x2 − 4x + 3
3

+ 9x − 3x2

2
+ 2(x2 − x)

6

= x2 − 4x + 3
3

+ 9x − 3x2

2
+ x2 − x

3

= (x
2 − 4x + 3) + (x2 − x)

3
+ 9x − 3x2

2

= x2 − 4x + 3 + x2 − x
3

+ 9x − 3x2

2

= 2x2 − 5x + 3
3

+ 9x − 3x2

2

= 2x2 − 5x + 3
3

+ 9x − 3x2

2

= 4x2 − 10x + 6
6

+ 27x − 9x2

6

= 4x2 − 10x + 6 + 27x − 9x2

6

= −5x
2 + 17x + 6

6

= −5
6
x2 + 17

6
x + 1.

Thus, evaluating P (x) at x = 2 yields

P (2) = −5
6
(2)2 + 17

6
(2) + 1

= −5
6
(4) + 17

6
(2) + 1

= −20
6
+ 34

6
+ 1

= 34 − 20
6

+ 1

= 14

6
+ 1

= 7

3
+ 1

= 7

3
+ 3

3

= 10

3
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Question 6: The differential equation

y′(t) = 1 − 4y(t) with y(0) = 1

has the exact solution y = 1

4
(3e−4t + 1). From the Runge-Kutta scheme given by the Butcher array

0
1

2

1

2
1

2
0

1

2
1 0 1

1/6 1/3 1/3 1/6

where

uk+1 = uk + h
4

∑
i=1

bif
⎛
⎝
uk + h

4

∑
j=1

ai,jkj , tk + cih
⎞
⎠

and using step size h = 0.1, what is the ∣y(2h) − u2∣, i.e. the global truncation error after two steps?

◯ 0.1

◯ 0

◯ 0.839

◯ 0.449

◯ 0.5

◯7 0.355

Using the formula given, the Butcher array yields a Runge-Kutta scheme of the form:

k1 = hf (un, tn)
k2 = hf (un + hk1/2, tn + h/2)
k3 = hf (un + hk2/2, tn + h/2)
k4 = hf (un + hk3, tn + h)

and

un+1 = un + (h/6) (k1 + 2k2 + 2k3 + k4) ,

for the function

f(un) = 1 − 4un.

Given the initial condition and the step size, to compute two time steps means to compute approximations to
y(0.1) and y(0.2). For the first time step, with u0 = 1.0 and h = 0.1,

k1 = −0.300, k2 = −0.294, k3 = −0.29412 and k4 − 0.2882352.

Thus u1 = 0.97059208.

The second evaluation yields

k1 = −0.288236832, k2 = −0.28247209536, k3 − 0.2825873900928 and − 0.276933336396288.

Thus u2 = 0.9423372610116352

The exact values are given by y(0.1) = 0.752740034 and y(0.2) = 0.58699672, thus the difference at t = 0.2 is
given by ∣y(0.2) − u2∣ = 0.355340537923719.
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Question 7: Given the integral

I = ∫
1/5

1/4

1

2
+ sin (πx) dx

what is the error of the approximate integral for the Trapezium rule when using five subintervals?

◯ 2.30e-5

◯ 2.11e-4

◯7 2.67e-6

◯ 1.44e-6

◯ 1.67e-3

◯ 1.44e-7

Determine the interval width h:
a = 1

4
and b = 1

5
with n = 5

then
h = b − a

n
=

1
5
− 1

4

5
=

4−5
20

5
= −1
20 ⋅ 5

= − 1

100
.

Calculate the points xi:
xi = a + ih for i = 0,1,2,3,4,5

that is
x0 =

1

4
, x1 =

1

4
− 1

100
, x2 =

1

4
− 2

100
, x3 =

1

4
− 3

100
, x4 =

1

4
− 4

100
, x5 =

1

5
.

Evaluate the function f(x) = 1
2
+ sin(πx) at these points:

f(x0) =
1

2
+ sin(π ⋅ 0.25) = 1

2
+ sin(π

4
) = 1

2
+
√
2

2
= 1.2071067811865475

f(x1) =
1

2
+ sin(π ⋅ 0.24) = 1.1845471059286887

f(x2) =
1

2
+ sin(π ⋅ 0.23) = 1.1613118653236518

f(x3) =
1

2
+ sin(π ⋅ 0.22) = 1.1374239897486897

f(x4) =
1

2
+ sin(π ⋅ 0.21) = 1.1129070536529764

f(x5) =
1

2
+ sin(π ⋅ 0.20) = 1.0877852522924731

Approximate the integral using the Trapezium rule:

Ih =
h

2
(f(x0) + 2f(x1) + 2f(x2) + 2f(x3) + 2f(x4) + f(x5)) .

Substituting the values of h and f(xi):

Ih = −
1

200
(f(0.25) + 2f(0.24) + 2f(0.23) + 2f(0.22) + 2f(0.21) + f(0.20)) .

Summing the values:

Ih = −
1

200
(1.20710678 + 2(1.18454711) + 2(1.16131187) + 2(1.13742399) + 2(1.11290705) + 1.08778525)

= −0.05743636031393516

Therefore, the approximate value of the integral using the Trapezium rule with five subintervals is:

Ih = −0.056785
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The exact integral is given as

I =
1/5

∫
1/4

1

2
+ sinπxdx

= [x
2
− cos(πx)

π
]
1/5

1/4

= 1

2
(1
5
− 1

4
) − 1

π
(cos(π

5
) − cos(π

4
))

= 1

2

1

20
− 1

π
(cos(π

5
) − cos(π

4
))

= −0.0574390283609654

Thus, the error is given by ∣I − Ih∣,

∣−0.0574390283609654 − −0.05743636031393516∣ = 2.668047030231213e − 06

15 of 16



DRAFT

Question 8: Given the matrix

A =
⎛
⎜
⎝

4 12 −16
12 40 −38
−16 −38 90

⎞
⎟
⎠

what is the Cholesky matrix L for the matrix A?

◯7
⎛
⎜
⎝

2 0 0
6 2 0
−8 5 1

⎞
⎟
⎠

◯
⎛
⎜
⎝

1 0 0
2 1 0
2 2 1

⎞
⎟
⎠

◯
⎛
⎜
⎝

1 2 3
0 5 6
0 0 6

⎞
⎟
⎠

◯
⎛
⎜
⎝

1 2 1
2 5 −4
3 8 1

⎞
⎟
⎠

◯ ( 2 1
2 5

)

◯
⎛
⎜
⎝

2 0 0
2 5 0
7 9 1

⎞
⎟
⎠

Initialize L as a lower triangular matrix with unknown elements:

L =
⎛
⎜
⎝

l11 0 0
l21 l22 0
l31 l32 l33

⎞
⎟
⎠

and solve for LTL = A. Thus first compute l11

l11 =
√
a11 =

√
4 = 2 ⇒ L =

⎛
⎜
⎝

2 0 0
l21 l22 0
l31 l32 l33

⎞
⎟
⎠
.

Compute l21:

l21 =
a21
l11
= 12

2
= 6 ⇒ L =

⎛
⎜
⎝

2 0 0
6 l22 0
l31 l32 l33

⎞
⎟
⎠
.

Compute l31:

l31 =
a31
l11
= −16

2
= −8 ⇒ L =

⎛
⎜
⎝

2 0 0
6 l22 0
−8 l32 l33

⎞
⎟
⎠
.

Compute l22:

l22 =
√

a22 − l221 =
√
40 − 62 =

√
40 − 36 =

√
4 = 2 ⇒ L =

⎛
⎜
⎝

2 0 0
6 2 0
−8 l32 l33

⎞
⎟
⎠
.

Compute l32:

l32 =
a32 − l31l21

l22
= −38 − (−8 ⋅ 6)

2
= −38 + 48

2
= 10

2
= 5 ⇒ L =

⎛
⎜
⎝

2 0 0
6 2 0
−8 5 l33

⎞
⎟
⎠
.

Lastly, compute l33:

l33 =
√

a33 − l231 − l232 =
√
90 − (−8)2 − 52 =

√
90 − 64 − 25 =

√
1 = 1.

Thus, the Cholesky matrix L for the given matrix A is:

L =
⎛
⎜
⎝

2 0 0
6 2 0
−8 5 1

⎞
⎟
⎠
.
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