Dr D. Sinden

JTMS-MAT-13: Numerical Methods

Sample Multiple Choice Exam Questions

Question 1:

What is the solution after the first step of the Newton method for the function $f(x) = 3x^3 + 5x + 1$ with the initial guess $x_0 = 1$

$\bigcirc x_1 = 3/4$	$\bigcirc x_1 = 2/14$
$\bigcirc x_1 = 1/4$	$\bigcirc x_1 = 9/10$
$\bigcirc x_1 = 5/14$	

What conditions need to hold for the bisection method to converge to a root of the function f(x) within the interval [a, b]?

$\bigcirc f(a)f(b) < 0$
$\bigcirc f(a) < f(b)$

What are the correct values for the coefficients a and b for the least squares approximation for $h(x) = a + bx^2$ and the data pairs (-1, 1), (0, 2) and (1, 1)?

Question 4:

For the following Runge-Kutta method:

$$u_{n+1} = u_n + (h/6) (K_1 + 4K_2 + K_3)$$

with $K_1 = f(u_n, t_n)$, $K_2 = f(u_n + hK_1/2, t_n + h/2)$, and $K_3 = f(u_n - hK_1 + 2hK_2, t_n + h)$

select the correct Butcher array

Question 5:

For which of the following matrices can you perform a Cholesky decomposition?

Question 6:

Which of the following systems is/are overdetermined?

Question 7:

Given the following data:

i	0	1	2
x_i	0	1	3
y_i	1	3	2

Using polynomial interpolation, what is the value of y(2)?

$\bigcirc \ y(2) = 3/2$	$\bigcirc y(2) = 3/4$	$\bigcirc y(2) = 10/3$
$\bigcirc y(2) = 11/4$	$\bigcirc y(2) = 4/9$	$\bigcirc y(2) = 0$

Question 8:

Using the trapezoidal rule with three subintervals, approximate the integral

$$T = \int_0^4 x^2 + 1 \,\mathrm{d}x$$

and find the approximate solution as

$\bigcirc T = 29.000$	$\bigcirc T = 19.333$	$\bigcirc T = 30.100$
$\bigcirc T = 28.519$	$\bigcirc T = 25.650$	$\bigcirc T = 26.519$

Question 9:

Given the system of non-linear equations

$$f(x_1, x_2) = \begin{pmatrix} 2x_1 + \cos(x_2) \\ x_1^3 + x_1 \cos(x_2) \end{pmatrix}$$

what is the Jacobian matrix that needs to be inverted for the Newton method?

$$\bigcirc \begin{pmatrix} 2 & -\sin(x_2) \\ 3x_1^2 + \cos(x_2) & -x_1\sin(x_2) \end{pmatrix} & \bigcirc \begin{pmatrix} -\sin(x_2) & -x_2\sin(x_2) \\ 3x_1 & 2 \end{pmatrix} \\
\bigcirc \begin{pmatrix} 2 & -\sin(x_2) \\ 3x_1^2 + \cos(x_2) & x_1\cos(x_2) \end{pmatrix} & \bigcirc \begin{pmatrix} 2 & 3x_1^2 \\ \cos(x_2) & -x_1\sin(x_2) \end{pmatrix} \\
\bigcirc \begin{pmatrix} 2x_1 & 2x_2 \\ \sin(x_1) & \cos(x_2) \end{pmatrix} & \bigcirc \begin{pmatrix} -\sin(x_2) & 2 \\ -x_1\sin(x_2) & 2x_1 \end{pmatrix}$$

Question 10:

Which of the following statements is true?

- \bigcirc The order of convergence of the bisection method is 1.
- \bigcirc The optimal order of convergence of secant method is higher than that for Newton method.
- \bigcirc Bisection method will always find a root if the function is continuous.
- Newton method will always find a root if the derivative exists and is not equal to zero.
- \bigcirc For convergence in [a, b], bisection method needs a continuous function on [a, b], and f(a)f(b) < 0.
- $\bigcirc\,$ Under certain conditions, Newton method has quadratic convergence.

Question 11:

Select those statements that are correct.

- Forward Euler has a higher order than Backward Euler.
- \bigcirc Runge-Kutta schemes are explicit if the a_{ij} coefficients of the Butcher array are zero for all entries along and above the diagonal.
- Backward Euler is implicit and second order accurate.
- Heun's method is second order accurate and explicit.
- \bigcirc The Crank-Nicolson method is implicit.
- The Crank-Nicholson and Backward Euler methods are both second order accurate.

Question 12:

What are the values of approximation u_1 and u_2 using two iterations of the Backward Euler method for the ordinary differential equation y' = 2y - 2 with initial condition y(0) = 1 and step size h = 0.1.

$$\bigcirc u_2 = 2 \qquad \bigcirc u_1 = -1 \qquad \bigcirc u_1 = 1$$
$$\bigcirc u_1 = 1.5 \qquad \bigcirc u_2 = 1 \qquad \bigcirc u_2 = 0.5$$

Question 13:

Given the following data:

$$\begin{array}{c|cccccc} i & 0 & 1 & 2 \\ \hline x_i & 0 & 2 & 4 \\ p_i & 2 & 1 & 2 \\ \end{array}$$

Using Newton interpolation, which is the right collocation matrix?

$$\bigcirc \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 4 \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 1 & 1 & 1 \\ 4 & 2 & 0 \\ 8 & 0 & 0 \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 4 & 8 \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 4 \\ 1 & 4 & 16 \end{pmatrix}$$