Dr. D. Sinden

CA-MATH-804: Numerical Analysis

Exam: Wednesday 25 May 2022

Question 1 [20 Points]: On the scaled unit square $\Omega = h[0,1]^2$, $h \in (0,1)$, consider the partial differential equation

$$-\left(\partial_{xx}u\left(x,y\right) + 2\partial_{yy}u\left(x,y\right)\right) = f\left(x,y\right) \qquad \text{in } \Omega,$$

$$u\left(x,y\right) = 0 \qquad \text{on } \partial\Omega.$$

Show that the weak form takes the form a(u, v) = (f, v), where

$$a\left(u,v\right) = \int_{\Omega} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + 2 \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \, \mathrm{d}\Omega$$

and

$$(f, v) = \int_{\Omega} f v \, d\Omega.$$

What conditions are imposed on the test function v(x, y)?

Question 2 [20 Points]: For given $v, w \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$ symmetric positive definite consider the function $\varphi : \mathbb{R} \to \mathbb{R}$ where $\varphi (\alpha) = \|v + \alpha w\|_A^2$ and $\|\cdot\|_A$ is the energy norm given by $\|x\|_A = \sqrt{x \cdot Ax}$. Find α such that φ becomes minimal.

If A is a diagonal matrix D, show that $||x||_{D^2}^2 = ||Dx||_2^2$.

Question 3 [20 Points]: Using

$$D^{+}f = \frac{f(x+h) - f(x)}{h},$$

and

$$D^{-}f = \frac{f(x) - f(x - h)}{h}$$

derive the discrete approximation to the second-order derivative as a matrix $A \in \mathbb{R}^{n \times n}$, when $u_0 = 0$ and $u_{n+1} = 0$.

The matrix has eigenvalues

$$\lambda_j = \frac{2}{h^2} \left(1 + \cos\left(\frac{\pi j}{n+1}\right) \right)$$
 for $j = 1, \dots, n$.

Using the half-angle formula

$$\cos^2\frac{\theta}{2} = \frac{1 + \cos\theta}{2},$$

find the ratio of the maximum and minimum eigenvalues.

Question 4 [20 Points]: Show that a solution which minimizes

$$\Phi(y) = \frac{1}{2}y \cdot Ay - y \cdot b$$

also solves the linear system Ax = b. Define the residue $r^{(k)}$ for an iterative scheme which solves the linear system. Show that $\nabla \Phi\left(x^{(k)}\right) = -r^{(k)}$. Consider the iterative scheme

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)}d^{(k)}$$

and set $d^{(k)} = r^{(k)}$. By considering the minimum of $\Phi(x^{(k+1)})$, i.e. $\Phi(x^{(k)} + \alpha^{(k)}d^{(k)})$, with respect to α , show that

$$\alpha^{(k)} = \frac{r^{(k)} \cdot r^{(k)}}{r^{(k)} \cdot Ar^{(k)}}$$

Question 5 [20 Points]: Show, by deriving the weights of the quadrature scheme using the Lagrange interpolating polynomials defined via

$$l_i(x) = \prod_{\substack{j=1,\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

that the scheme

$$I(f) = \sum_{i=1}^{3} \alpha_i f(x_i) = \frac{2}{3} \left[2f\left(-\frac{1}{2}\right) - f(0) + 2f\left(\frac{1}{2}\right) \right]$$

where $\alpha_i = \int_{-1}^1 l_i(x) dx$, is a Lagrange quadrature formula for 3 nodes $x_1 = -\frac{1}{2}$, $x_2 = 0$ and $x_3 = \frac{1}{2}$ on the interval [-1, 1].

Determine the quadrature error of I(f).

Question 6 [20 Points]: Consider the function $H: \mathbb{R} \to \mathbb{R}$ with

$$H\left(x\right) = \begin{cases} 0 & \text{for } x \leq 0, \\ 1 & \text{else.} \end{cases}$$

Show that this function has a distributional derivative.