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Jacobs University Spring Semester 2022

Dr. D. Sinden

CA-MATH-804: Numerical Analysis
Exam & Solutions

All trigonometric values are in radians.

Question 1 [20 Points]: On the scaled unit square Ω = h[0,1]2, h ∈ (0,1), consider the partial differential
equation

− (∂xxu (x, y) + 2∂yyu (x, y)) = f (x, y) in Ω,

u (x, y) = 0 on ∂Ω.

Show that the weak form takes the form a (u, v) = (f, v), where

a (u, v) = ∫
Ω

∂u

∂x

∂v

∂x
+ 2∂u

∂y

∂v

∂y
dΩ

and

(f, v) = ∫
Ω
fv dΩ.

What conditions are imposed on the test function v (x, y)?

Let Ω = h[0,1]2 ⊂ R2 and consider

−(uxx(x, y) + 2uyy(x, y)) = f(x, y) in Ω, with u = 0 on ∂Ω.

Multiply by a test function v and integrate over Ω:

∫
Ω
(−uxx − 2uyy) v dΩ = ∫

Ω
f v dΩ.

Integrate by parts and use v = 0 on ∂Ω to kill the boundary terms:

∫
Ω
uxx v dΩ = −∫

Ω
ux vx dΩ, ∫

Ω
uyy v dΩ = −∫

Ω
uy vy dΩ.

Hence the weak form is

a(u, v) = (f, v), where a(u, v) = ∫
Ω
(ux vx + 2uy vy)dΩ, (f, v) = ∫

Ω
f v dΩ.

The test functions v are taken from

H1
0(Ω) = { v ∈H1(Ω) ∶ v = 0 on ∂Ω}.
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Question 2 [20 Points]: For given v, w ∈ Rn and A ∈ Rn×n symmetric positive definite consider the function
φ ∶ R→ R where φ (α) = ∥v + αw∥2A and ∥⋅∥A is the energy norm given by ∥x∥A =

√
x ⋅Ax. Find α such that

φ becomes minimal.
If A is a diagonal matrix D, show that ∥x∥2D2 = ∥Dx∥22.

The energy-norm expands as

ϕ(α) = ∥v + αw∥2A
= (v + αw)TA (v + αw)
= vTAv + 2αvTAw + α2wTAw.

Differentiating w.r.t. α and setting to zero gives

ϕ′(α) = 2 vTAw + 2αwTAw Ô⇒ α = − v
TAw

wTAw
.

Hence the minimizer is
α∗ = − v

TAw

wTAw
.

If A is a diagonal matrix D,

∥x∥2D2 = xTD2x

= xTDTDx

= (Dx)T (Dx)
= ∥Dx∥22.

Using the half-angle identity
1 + cos θ = 2 cos2 θ

2
,

then
λj =

2

h2
(1 + cos πj

n + 1
) = 4

h2
cos2( πj

2(n+1)).

Thus
λmax = λ1 =

4

h2
cos2( π

2(n+1)), λmin = λn =
4

h2
cos2( nπ

2(n+1)) =
4

h2
sin2( π

2(n+1)).

Hence the spectral ratio is
λmax

λmin
=
cos2( π

2(n+1))

sin2( π
2(n+1))

= cot2( π
2(n+1)).
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Question 3 [20 Points]: Using

D+f = f (x + h) − f (x)
h

,

and

D−f = f (x) − f (x − h)
h

derive the discrete approximation to the second-order derivative as a matrix A ∈ Rn×n, when u0 = 0 and
un+1 = 0.
The matrix has eigenvalues

λj =
2

h2
(1 + cos( πj

n + 1
)) for j = 1, . . . , n.

Using the half-angle formula

cos2
θ

2
= 1 + cos θ

2
,

find the ratio of the maximum and minimum eigenvalues.

Let h = 1
n+1 , and xi = i h, i = 0,1, . . . , n + 1, with u0 = un+1 = 0.

D+ui =
ui+1 − ui

h
, D−ui =

ui − ui−1
h

,

So that Discrete second derivative by backward of forwards (or vice versa):

D−D+ui =
1

h
(D+ui −D+ui−1) =

ui−1 − 2ui + ui+1
h2

.

Hence the discrete approximation to u′′ = f leads to

ui−1 − 2ui + ui+1
h2

= fi, i = 1, . . . , n.

In matrix form Au = f , where

A = 1

h2

⎛
⎜⎜⎜⎜⎜
⎝

−2 1 0
1 −2 1

⋱ ⋱ ⋱
1 −2 1

0 1 −2

⎞
⎟⎟⎟⎟⎟
⎠

∈ Rn×n.

With this A and the Dirichlet boundary conditions u0 = un+1 = 0, the finite-difference approximation to
u = f is simply Au = f .
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Question 4 [20 Points]: Show that a solution which minimizes

Φ (y) = 1

2
y ⋅Ay − y ⋅ b

also solves the linear system Ax = b. Define the residue r(k) for an iterative scheme which solves the linear
system. Show that ∇Φ (x(k)) = −r(k). Consider the iterative scheme

x(k+1) = x(k) + α(k)d(k)

and set d(k) = r(k). By considering the minimum of Φ (x(k+1)), i.e. Φ (x(k) + α(k)d(k)), with respect to α,
show that

α(k) = r(k) ⋅ r(k)

r(k) ⋅Ar(k)
.

Note assume A is symmetric (so that ∇(1
2
yTAy) = Ay). Then, to show that minimiser of

Φ(y) = 1
2
yTAy − yT b

satisfies Ay = b. first compute the gradient ∇Φ(y) = Ay− b. and show that stationarity ∇Φ(y) = 0 gives Ay = b.
Define the residual at step k by

r(k) = b −Ax(k).

Then
∇Φ(x(k)) = Ax(k) − b = − r(k).

For the scheme
x(k+1) = x(k) + α(k) d(k), d(k) = r(k),

consider the one-variable function
φ(α) = Φ(x(k) + αr(k)).

Expand and differentiate:

φ(α) = 1
2
(x(k) + αr(k))TA (x(k) + αr(k)) − (x(k) + αr(k))T b,

and

φ′(α) = (x(k))TAr(k) + α (r(k))TAr(k) − (r(k))T b

= − (r(k))T r(k) + α (r(k))TAr(k).

Setting φ′(α) = 0 yields

α(k) =
(r(k))T r(k)

(r(k))TAr(k)
.

Hence the optimal step-size is

α(k) = r(k) ⋅ r(k)

r(k) ⋅Ar(k)
.
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Question 5 [20 Points]: Show, by deriving the weights of the quadrature scheme using the Lagrange
interpolating polynomials defined via

li (x) =
n

∏
j=1,
j≠i

x − xj
xi − xj

that the scheme

I (f) =
3

∑
i=1
αif (xi) =

2

3
[2f (−1

2
) − f(0) + 2f (1

2
)]

where αi = ∫
1
−1 li (x) dx, is a Lagrange quadrature formula for 3 nodes x1 = −1

2
, x2 = 0 and x3 = 1

2
on the

interval [−1,1].
Determine the quadrature error of I(f).

To approximate
I(f) = ∫

1

−1
f(x)dx

by a three-point Lagrange-quadrature formula with nodes

x1 = −1
2
, x2 = 0, x3 = +1

2
,

let
ℓi(x) =

3

∏
j=1
j≠i

x − xj
xi − xj

, i = 1,2,3,

be the Lagrange basis polynomials. Then the weights are

αi = ∫
1

−1
ℓi(x)dx, i = 1,2,3,

and the quadrature reads

I(f) ≈
3

∑
i=1
αi f(xi).

For the computation of the weights,

ℓ1(x) =
(x − 0)(x − 1

2
)

(−1
2
− 0)(−1

2
− 1

2
)

=
(x)(x − 1

2
)

1
4

= 4x (x − 1
2
),

ℓ2(x) =
(x + 1

2
)(x − 1

2
)

(0 + 1
2
)(0 − 1

2
)

= −4 (x2 − 1
4
),

ℓ3(x) =
(x + 1

2
)(x − 0)

(1
2
+ 1

2
)(1

2
− 0)

=
(x + 1

2
)x

1
4

= 4x (x + 1
2
).

Hence
α1 = ∫

1

−1
4x (x − 1

2
)dx = 4

3
, α2 = ∫

1

−1
−4(x2 − 1

4
)dx = −2

3
, α3 = ∫

1

−1
4x (x + 1

2
)dx = 4

3
.
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One then checks easily that

3

∑
i=1
αi = 2,

3

∑
i=1
αi xi = 0,

3

∑
i=1
αi x

2
i = 2

3
,

3

∑
i=1
αi x

3
i = 0,

so the rule is exact for all polynomials of degree up to 3. In the compact form

I(f) ≈ 2

3
[2f(−1

2
) − f(0) + 2f(1

2
)].

To compute the error term, note that since the rule integrates exactly all polynomials of degree ≤ 3, the first
non-zero error appears at degree 4. A standard remainder-of-Lagrange-interpolation argument gives: for some
ξ ∈ (−1,1),

E(f) = ∫
1

−1
f(x)dx −

3

∑
i=1
αi f(xi) =

f (4)(ξ)
4!

∫
1

−1
(x − x1)(x − x2)(x − x3)dx.

A direct evaluation of the integral shows

∫
1

−1
(x + 1

2
)x (x − 1

2
)dx = 7

30
,

and hence
E(f) = f

(4)(ξ)
24

7

30
= 7

720
f (4)(ξ).

Thus the three-point Lagrange quadrature on [−1,1] with nodes {−1
2
,0, 1

2
} has error

∫
1

−1
f(x)dx − 2

3
[2f(−1

2
) − f(0) + 2f(1

2
)] = 7

720
f (4)(ξ).
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Question 6 [20 Points]: Consider the function H ∶ R→ R with

H (x) = { 0 for x ≤ 0,
1 else.

Show that this function has a distributional derivative.

Define the Heaviside function H ∶ R↦ {0,1} by

H(x) =
⎧⎪⎪⎨⎪⎪⎩

0, x < 0,
1, x ≥ 0.

As a distribution, for any test function φ(x) ∈ C∞c (R),

⟨H,φ⟩ = ∫
R
H(x)φ(x)dx

= ∫
∞

0
φ(x)dx.

The distributional derivative H ′(x) is defined by

⟨H ′, ψ⟩ = − ⟨H,ψ′⟩

= −∫
∞

0
ψ′(x)dx

= −[ψ(x)]∞
0

= −(0 − ψ(0))
= ψ(0).

Since ⟨δ,ψ⟩ = ψ(0), it follows that
H ′(x) = δ(x)

in the sense of distributions.
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