Dr. D. Sinden

JTMS-MAT-13: Numerical Methods

Exam: Thursday 23 May 2024

All questions carry equal marks. Answer 5 questions only. Please use the booklet provided.

All trigonometric values are in radians.

Question 1:

(a) For the function $f(x) = (x + 1/2)\cos(x)$, show that Newton's method is

$$x_{k+1} = x_k - \frac{(x_k + 1/2)\cos(x_k)}{\cos(x_k) - (x_k + 1/2)\sin(x_k)}.$$

(b) From the definition of Newton's method, show that the secant method is given by

$$x_{k+1} = x_k - f(x_k) \frac{x_{k-1} - x_k}{f(x_{k-1}) - f(x_k)}.$$

- (c) Compute two iterates of the Newton method with initial guess $x_0 = -1/3$.
- (d) Compute two iterates of the secant method with initial guess $x_0 = -1/3$ and $x_1 = -0.4$.

Question 2:

Consider the linear ordinary differential equation

$$y''(t) = -4y'(t) + y(t)$$
 with $y(0) = 1$ and $y'(0) = 1$.

(a) By converting this 2^{nd} order ordinary differential equation into a system of two coupled first order ODEs, one in y(t) and one in y'(t), show the system can be written as a vector-valued ordinary differential equation in $\vec{v}(t) = (y(t), y'(t))^T$, in the form $f(\vec{v}) = A\vec{v}$ where

$$A = \left(\begin{array}{cc} 0 & 1 \\ 1 & -4 \end{array}\right).$$

(b) Show that the forward Euler method can be written as

$$\vec{u}_{n+1} = (I + hA)\,\vec{u}_n$$

for some approximation $\vec{u} \in \mathbb{R}^2$, and provide the full system for \vec{u}_{n+1} for the ODE presented above.

(c) Show that the backward Euler method yields

$$\vec{u}_{n+1} = \frac{1}{1+4h-h^2} \left(\begin{array}{cc} 1+4h & -h \\ -h & 1 \end{array} \right) \vec{u}_n.$$

- (d) Calculate approximations y(0.3) and y'(0.3) using forward Euler method with h = 0.15.
- (e) Calculate y(0.3) and y'(0.3) using backward Euler method with h = 0.15.

Question 3:

- (a) What is meant if a matrix is said to be diagonally dominant?
- (b) Give a definition for a positive definite matrix.
- (c) What is the range of ω for which the method of successive over relaxation converges for a semi-positive definite matrix?
- (d) Show that the matrix

$$A = \left(\begin{array}{ccc} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{array}\right)$$

has eigenvalues $\lambda = 4$, $4 + \sqrt{10}$ and $4 - \sqrt{10}$, and thus is can be inverted using the method of successive over relaxation.

Question 4:

(a) Show, by constructing an cubic polynomial, q(x), which is orthogonal to 1, x and x^2 , i.e.

$$\int_{-1}^{1} x^{i} q(x) dx = 0 \quad \text{for} \quad i = 0, 1, 2$$

that the Gauss nodes for Gaussian quadrature are $x_i^* = -\sqrt{\frac{3}{5}}$, $0, \sqrt{\frac{3}{5}}$.

(b) Show that the Lagrange polynomials for the function

$$f(x) = 3x\cos(x)$$

which generates the data

$$\begin{array}{c|ccccc}
i & 0 & 1 & 2 \\
\hline
x_i & -\pi/4 & 0 & \pi/4 \\
y_i & -\frac{3\pi}{4\sqrt{2}} & 0 & \frac{3\pi}{4\sqrt{2}}
\end{array}$$

are

$$l_0 = \frac{8}{\pi^2} x (x - \pi/4), \quad l_1 = -\frac{16}{\pi^2} (x^2 - \pi^2/16) \quad \text{and} \quad l_2 = \frac{8}{\pi^2} x (x + \pi/4).$$

(c) Thus, using $A_i = \int_{-1}^1 l_i(x) dx$, show that the approximation for the integral yields

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=0}^{2} A_{i} f(x_{i}^{*}) = 0.$$

Question 5: Given the following data:

$$\begin{array}{c|ccccc} i & 0 & 1 & 2 \\ \hline x_i & 0 & 1 & 3 \\ y_i & 1 & 3 & 2 \\ \end{array}$$

Using polynomial interpolation, what is the value of y(2)?

$$y(2) = 3/2$$

$$y(2) = 3/4$$

$$y(2) = \frac{10}{3}$$

$$\bigcirc y(2) = 11/4$$

$$y(2) = 4/9$$

$$y(2) = 0$$

Question 6: The differential equation

$$y'(t) = 1 - 4y(t)$$
 with $y(0) = 1$

has the exact solution $y = \frac{1}{4} (3e^{-4t} + 1)$. From the Runge-Kutta scheme given by the Butcher array

where

$$u_{k+1} = u_k + h \sum_{i=1}^4 b_i f\left(u_k + h \sum_{j=1}^4 a_{i,j} k_j, t_k + c_i h\right)$$

and using step size h = 0.1, what is the $|y(2h) - u_2|$, i.e. the global truncation error after two steps?

 \bigcirc 0.1

0.449

 \bigcirc 0

 \bigcirc 0.5

0.839

0.164

Question 7: Given the integral

$$I = \int_{1/4}^{1/5} \frac{1}{2} + \sin(\pi x) \, dx$$

what is the error of the approximate integral for the Trapezium rule when using five subintervals?

O 2.30e-5

① 1.44e-6

O 2.11e-4

○ 1.67e-3

O 2.67e-6

① 1.44e-7

Question 8: Given the matrix

$$A = \left(\begin{array}{ccc} 4 & 12 & -16 \\ 12 & 40 & -38 \\ -16 & -38 & 90 \end{array}\right)$$

what is the Cholesky matrix L for the matrix A?

$$\bigcirc \left(\begin{array}{ccc} 2 & 0 & 0 \\ 6 & 2 & 0 \\ -8 & 5 & 1 \end{array} \right)$$

$$\bigcirc \left(\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 5 & -4 \\ 3 & 8 & 1 \end{array}\right)$$

$$\bigcirc \left(\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 2 & 1 \end{array}\right)$$

$$\bigcirc \left(\begin{array}{cc} 2 & 1 \\ 2 & 5 \end{array}\right)$$

$$\bigcirc \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 6 \end{array}\right)$$

$$\bigcirc \left(\begin{array}{ccc} 2 & 0 & 0 \\ 2 & 5 & 0 \\ 7 & 9 & 1 \end{array} \right)$$