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Constructor University Spring Semester 2025

Dr. D. Sinden

JTMS-MAT-13: Numerical Methods
Exam & Solutions

All questions carry equal marks. Only five questions will be marked. Please use the booklet provided,
clearly indicating in the inside cover which questions are to be marked.

All trigonometric values are in radians.

Question 1:

(a) Given Newton’s method in one dimension is

xn+1 = xn −
f (xn)
f ′ (xn)

,

using a first-order approximation for the derivative, derive the secant method.

(b) Given a two-dimensional function, f⃗ = (f1, f2)T , which takes two variables as arguments, what is the
Jacobian?

(c) For

f⃗ = ( x2 + y2 − xy
y2 + ex+y )

show the inverse of the Jacobian is given by

J−1 = 1

det (J)
( 2y + ex+y x − 2y
−ex+y 2x − y ) , where det (J) = 3ex+y (x − y) + 2y (2x − y) .

(d) With initial condition (x0, y0)T = (1,3)T , find the first iterate of the Newton method.

(a) The first order backwards approximation to the derivative f ′(x) can be written as

f ′(xn) =
f (xn) − f (xn−1)

xn − xn−1

which, when substituted in Newton’s method is

xn+1 = xn − f (xn)
xn − xn−1

f (xn) − f (xn−1)
.

(b) The Jacobian matrix of the given function is

J =

⎛
⎜⎜⎜⎜
⎝

∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

⎞
⎟⎟⎟⎟
⎠

.

(c) As f1 = x2 + y2 − xy, so
∂f1
∂x
= 2x − y
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and
∂f1
∂y
= 2y − x.

As f2 = y2 + ex+y, so
∂f2
∂x
= ex+y

and
∂f2
∂y
= 2y − ex+y.

Thus,

J = ( 2x − y 2y − x
ex+y 2y − ex+y ) .

The determinant is

det (J) = (2x − y)(2y − ex+y) − (2y − x)ex+y

= 3ex+y (x − y) + 2y (2x − y)

and the inverse is of a 2×2 matrix
A = ( a b

c d
)

is
A−1 = 1

ad − cb
( d −b
−c a

) .

Hence the inverse of the Jacobian is

J−1 = 1

det (J)
( 2y + ex+y x − 2y
−ex+y 2x − y ) .

(d) Substituting the values (x0, y0) into the vector Newton iteration scheme,

x⃗1 = x⃗0 − J−1(x⃗0)f (x⃗0)

is

x⃗1 = x⃗0 − J−1 (x⃗0) f⃗ (x⃗0)

= ( x0

y0
) − 1

det (J)
( 2y0 + ex0+y0 x0 − 2y0
−ex0+y0 2x0 − y0

)( x2
0 + y20 − x0y0
y20 + ex0+y0

)

= ( 1
3
) − 1

det (J)
( 2 × 3 + e1+3 1 − 2 × 3

−e1+3 2 × 1 − 3 )(
12 + 32 − 1 × 3

32 + e1+3 )

= ( 1
3
) − 1

−6 (1 + e4)
( 6 + e4 −5
−e4 −1 )(

7
9 + e4 )

= ( 1
3
) + 1

6 (1 + e4)
( −3 + 2e

4

−9 − 8e4 )

= ( 1
3
) − 1

6 (1 + e4)
( 3 − 2e4

9 + 8e4 )

= ( 1.31834
1.66367

)
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Question 2:

(a) What is a singular matrix?

(b) Given the matrix

A =
⎛
⎜
⎝

4 3 1
3 4 3
1 3 5

⎞
⎟
⎠
,

show the row echelon form of the matrix can be written as

U =
⎛
⎜
⎝

4 3 1
0 7 9
0 0 52

⎞
⎟
⎠
.

(c) By applying Gaussian elimination, or any other method, find the solution to the linear equation Ax⃗ = b⃗,
where b⃗ is given by

b⃗ =
⎛
⎜
⎝

61
63
43

⎞
⎟
⎠
.

(d) If an n × n matrix is invertible, what is the order of the upper limit for the number of arithmetic
operations to yield the inverse for Gaussian elimination?

(e) If an n × n matrix is in lower triangular form, what is the order of the upper limit for the number of
arithmetic operations to perform back substitution?

(a) A singular matrix has a determinant which is equal to zero. Other answers are that the matrix does not
have full rank, etc.

(b) Note: there are many ways of providing equivalent row echelon matrices, depending on the elementary row
operations which are performed. Typically, the first step is R2 ↦ 4R2 − 3R1, so that

Ā =
⎛
⎜
⎝

4 3 1
0 7 9
1 3 5

⎞
⎟
⎠
,

Next R3 ↦ 4R3 −R1

Ā =
⎛
⎜
⎝

4 3 1
0 7 9
0 9 19

⎞
⎟
⎠
,

Finally, R3 ↦ 7R3 − 9R2 then yields

Ā =
⎛
⎜
⎝

4 3 1
0 7 9
0 0 52

⎞
⎟
⎠
,

Note that if partial pivoting is performed and a row swap performed, the signs change: once for the row swap
and once in the row operation.

(c) The first step is R2 ↦ 4R2 − 3R1, so that

Ā =
⎛
⎜
⎝

4 3 1 61
0 7 9 69
1 3 5 43

⎞
⎟
⎠
,

Next R3 ↦ 4R3 −R1

Ā =
⎛
⎜
⎝

4 3 1 61
0 7 9 69
0 9 19 111

⎞
⎟
⎠
,
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Finally, R3 ↦ 7R3 − 9R2 then yields

Ā =
⎛
⎜
⎝

4 3 1 61
0 7 9 69
0 0 52 156

⎞
⎟
⎠
,

Thus, if x⃗ = (x, y, z)T , then evaluating row three gives 52z = 156, so z = 3. Substituting this into the second row
gives 7y + 27 = 69, thus 7y = 42, so that y = 6. The last equation is 4x + 18 + 3 = 61, thus 4x = 40. Hence

x⃗ =
⎛
⎜
⎝

10
6
3

⎞
⎟
⎠
.

(d) The order of Gaussian elimination is O (n3).

(e) The order of back substitution is O (n2).
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Question 3:

(a) Show, by constructing an cubic polynomial, q(x), which is orthogonal to 1, x and x2, i.e.

1

∫
−1

xi q(x)dx = 0 for i = 0,1,2

that the Gauss nodes for Gaussian quadrature are x∗i = −
√

3

5
, 0,
√

3

5
.

(b) Lagrange polynomials are defined as

li(x) = ∏
0≤j≤n
j≠i

x − xj

xi − xj
.

Derive the three Lagrange polynomials for the x∗i given above.

(c) Show that the weights ci such that

ci

1

∫
−1

li(x)dx = 1.

for each Lagrange polynomial, are given by c0 =
9

5
, c1 =

9

8
and c2 =

9

8
.

(a) To show that the Gauss nodes for Gaussian quadrature are x∗i = −
√

3

5
, 0,
√

3

5
, we need to find a cubic

polynomial q(x) which is orthogonal to 1, x, and x2 over the interval [−1,1]. This means we require:

∫
1

−1
q(x)dx = 0 ∫

1

−1
xq(x)dx = 0 and ∫

1

−1
x2q(x)dx = 0.

Let q(x) = x(x2 −a). We choose this form because it is a cubic polynomial and we will determine the value of a
that satisfies the orthogonality conditions. Now, we need to compute the integrals. Firstly, compute ∫

1
−1 q(x)dx:

∫
1

−1
x(x2 − a)dx = ∫

1

−1
(x3 − ax)dx

Since x3 and x are odd functions, their integrals over symmetric limits around zero are zero, i.e.

∫
1

−1
x3 dx = 0 and ∫

1

−1
axdx = 0

Thus,

∫
1

−1
(x3 − ax)dx = 0 − 0 = 0

Compute ∫
1
−1 xq(x)dx:

∫
1

−1
x(x(x2 − a))dx = ∫

1

−1
(x4 − ax2)dx

As
∫

1

−1
x4 dx = 2

5

and
∫

1

−1
x2 dx = 2

3

Thus we have,

∫
1

−1
(x4 − ax2)dx = 2

5
− a ⋅ 2

3
= 0
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so solving for a yields
2

5
− a ⋅ 2

3
= 0 ⇒ a = 2

5
⋅ 3
2
= 3

5
.

Thus, the polynomial q(x) is:
q(x) = 1

2
x(x2 − 3

5
) .

We have constructed the polynomial q(x). Now, we need to find the roots of q(x) = 0 to determine the Gauss
nodes, i.e. 1

2
x (x2 − 3

5
) = 0, which gives x = 0 and x = ±

√
3
5
.

(b) Lagrange polynomials are defined as
li(x) = ∏

0≤j≤n
j≠i

x − xj

xi − xj

Thus for x0 = −
√

3

5
, x1 = 0 and x2 =

√
3

5
, then

l0 (x) =
(x − x1) (x − x2)
(x0 − x1) (x0 − x2)

=
(x − 0) (x −

√
3
5
)

(−
√

3
5
− 0)(−

√
3
5
−
√

3
5
)

=
x(x −

√
3
5
)

−
√

3
5
(−2
√

3
5
)

=
x(x −

√
3
5
)

2 3
5

= 5

6
x
⎛
⎝
x −
√

3

5

⎞
⎠
.

For l1 (x), then

l1 (x) =
(x − x0) (x − x2)
(x1 − x0) (x1 − x2)

=
(x +

√
3
5
)(x −

√
3
5
)

(0 +
√

3
5
)(0 −

√
3
5
)

=
(x2 − 3

5
)

−3
5

= −5
3
(x2 − 3

5
)

= (1 − 5

3
x2) .
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Finally, l2, which is similar to l0,

l2 (x) =
(x − x0) (x − x1)
(x2 − x0) (x2 − x1)

=
(x +

√
3
5
) (x − 0)

(
√

3
5
+
√

3
5
)(
√

3
5
− 0)

=
x(x +

√
3
5
)

(2
√

3
5
)
√

3
5

= 5

6
x
⎛
⎝
x +
√

3

5

⎞
⎠
.

(c) Considering l0(x) =
5

6
x(x −

√
3
5
), then

1

∫
−1

l0 (x)dx =
1

∫
−1

5

6
x
⎛
⎝
x −
√

3

5

⎞
⎠
dx

= 5

6

1

∫
−1

x2 dx − 5

6

√
3

5
xdx

= 5

6
[x

3

3
]
1

−1
− 5

6

√
3

5
[x

2

2
]
1

−1

= 5

6
[1
3
− −1

3
] − 5

6

√
3

5
[1
2
− 1

2
]

= 5

6

2

3

= 5

9
.

Thus, c0
1

∫
−1

l0 (x)dx = 1⇒ c0 =
9

5
. Similarly for l2(x),

1

∫
−1

l2 (x)dx =
1

∫
−1

5

6
x
⎛
⎝
x +
√

3

5

⎞
⎠
dx

= 5

6

1

∫
−1

x2 dx + 5

6

√
3

5
xdx

= 5

9
.
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Hence, c2 =
9

5
. Finally, for l1(x)

1

∫
−1

l1 (x)dx =
1

∫
−1

(1 − 5

3
x2)dx

=
1

∫
−1

1dx − 5

3

1

∫
−1

x2 dx

= [x]1−1 −
5

3
[x

3

3
]
1

−1

= 2 − 5

3

2

3

= 18

9
− 10

9

= 8

9
.

Hence, c1 =
9

8
.
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Question 4:

(a) What condition on the Butcher array makes a Runge-Kutta scheme implicit?

(b) The differential equation
y′(t) = 1 − 2y(t) with y(0) = 1

has the exact solution y = 1

2
(e−2t + 1). From the Runge-Kutta scheme given by the Butcher array

0
1
2

1
2

1
2

0 1
2

1 0 0 1

1/6 1/3 1/3 1/6

where

uk+1 = uk + h
4

∑
i=1

bif
⎛
⎝
uk + h

4

∑
j=1

ai,jkj , tk + cih
⎞
⎠
= uk + h

4

∑
i=1

biki

and using step size h = 0.1, show that to compute u1, the k coefficients are given by

k1 = −1, k2 = −0.9, k3 = −0.91 and k4 = −0.818.

(c) For an s-stage Runge-Kutta scheme, what condition on the coefficients bi is necessary for stability?

(d) Find the global truncation error after two steps, i.e. ∣y(2h) − u2∣.

(a) A Runge-Kutta scheme is said be to be implicit if the matrix A is lower triangular.

(b) Given u0 = 1 at x = 0 and f(un, tn) = 1 − 2un, then

k1 = f(u0, x0) = 1 − 2u0 = −1

and

k2 = f (u0 +
h

2
k1, x0 +

h

2
) = 1 − 2(1 + 0.1

2
(−1))

= 1 − 2(1 − 1

20
)

= 1 − 19/10
= 1 − 1.9
= −0.9

and

k3 = f (u0 +
h

2
k2, x0 +

h

2
) = 1 − 2(1 + 0.1

2
(−0.9))

= −0.91

and lastly,

k4 = f (u0 + hk3, x0 + h) = 1 − 2 (1 + 0.1(−0.91))
= −0.818

(c) For a Runge-Kutta scheme to be stable, a necessary condition is that ∑s
i=1 bi = 1.
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(d) The first step is given by

u1 = u0 +
h

6
(k1 + 2k2 + 2k3 + k4)

= 1 + 1

60
(−1 − 2 × 0.9 − 2 × 0.91 − 0.818)

= 0.90936̇

The second step requires
k1 = f (u1, x1) = 1 − 2u1 = −0.818733̇

and

k2 = f (u1 +
h

2
k1, x1 +

h

2
) = 1 − 2(u1 +

h

2
k1)

= 1 − 2(0.90936̇ − 0.1

2
× 0.818733̇)

= −0.736859998667

and

k3 = f (u1 +
h

2
k2, x1 +

h

2
) = 1 − 2(u1 +

h

2
k2)

= 1 − 2(0.90936̇ − 0.1

2
× 0.736859998667)

= −0.7450473334532999

and lastly,

k4 = f (u1 + hk3, x1 + h) = 1 − 2 (u1 + hk3)
= −0.6697238666293399

thus,

u2 = u1 +
h

6
(k1 + 2k2 + 2k3 + k4)

= 0.9093 + 1

60
(−0.818733̇ − 2 × 0.736859998667 − 2 × 0.7450473334532999 − 0.6697238666293399)

= 0.835128802265501

The exact value is y = 1
2
(e−0.4 + 1) = 0.8351600230178197.

Thus, the global truncation error is given by

∣0.8351600230178197 − 0.835128802265501∣ = 3.122075231865029e − 05 = 3.122 × 10−5.

Note: some latitude will be given, due to likelihood of rounding error between steps.
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Question 5: Given the following data:

i 0 1 2
xi 0 1 3
yi 2 4 3

Using polynomial interpolation, such as Lagrange or Newton interpolation, what is the value of y(2)?

◯ 14/3

◯7 13/3

◯ 4

◯ 43/9

◯ 10/3

◯ 41/10

To find the value of y(2) using polynomial interpolation, we can use either the Lagrange interpolation formula
or Newton’s formula. The Lagrange interpolation polynomial for the given set of data points (xi, yi) is given
by:

P (x) =
n

∑
i=0

yili(x)

where li(x) are the Lagrange basis polynomials defined as:

li(x) = ∏
0≤j≤n
j≠i

x − xj

xi − xj
.

Given data points:
i 0 1 2
xi 0 1 3
yi 2 4 3

We have n = 2, so we need to compute l0(x), l1(x) and l2(x). Calculating l0(x)

l0(x) =
x − x1

x0 − x1
⋅ x − x2

x0 − x2

= x − 1
0 − 1

⋅ x − 3
0 − 3

= −(x − 1)
1

⋅ −(x − 3)
3

= (1 − x) ⋅ (3 − x
3
)

= (x − 1)(x − 3)
3

= x2 − 4x + 3
3

Calculating l1(x)

l1(x) =
x − x0

x1 − x0
⋅ x − x2

x1 − x2

= x − 0
1 − 0

⋅ x − 3
1 − 3

= x ⋅ x − 3
−2

= x ⋅ (3 − x
2
)

= x(3 − x)
2
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Lastly, calculating l2(x)

l2(x) =
x − x0

x2 − x0
⋅ x − x1

x2 − x1

= x − 0
3 − 0

⋅ x − 1
3 − 1

= x

3
⋅ x − 1

2

= x(x − 1)
6

Constructing the interpolation polynomial P (x)

P (x) = y0 ⋅ l0(x) + y1 ⋅ l1(x) + y2 ⋅ l2(x)
= 2 ⋅ l0(x) + 4 ⋅ l1(x) + 3 ⋅ l2(x)

= 2

3
(x2 − 4x + 3) + 2x (3 − x) + 1

2
x (x − 1)

= (2
3
− 2 + 1

2
)x2 + (−1

2
+ 6 − 8

3
)x + 2

= 4 − 12 + 3
6

x2 + 36 − 3 − 16
6

x + 2

= −5
6
x2 + 17

6
x + 2.

Thus, evaluating P (x) at x = 2 yields

P (2) = −5
6
(2)2 + 17

6
(2) + 2

= −5
6
(4) + 17

6
(2) + 2

= −20
6
+ 34

6
+ 2

= 34 − 20
6

+ 2

= 14

6
+ 2

= 7

3
+ 2

= 7

3
+ 6

3

= 7 + 6
3

= 13

3
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Question 6: Given the integral

I = ∫
1/5

1/4

1

3
+ sin (πx) dx

what is the error of the approximate integral for the Trapezium rule when using five subintervals?

◯ 2.30e-5

◯ 2.11e-4

◯ 8.44e-7

◯ 8.00e-6

◯7 2.67e-6

◯ 8.67e-3

Determine the interval width h:
a = 1

4
and b = 1

5
with n = 5

then
h = b − a

n
=

1
5
− 1

4

5
=

4−5
20

5
= −1
20 ⋅ 5

= − 1

100
.

Calculate the points xi:
xi = a + ih for i = 0,1,2,3,4,5

that is
x0 =

1

4
, x1 =

1

4
− 1

100
, x2 =

1

4
− 2

100
, x3 =

1

4
− 3

100
, x4 =

1

4
− 4

100
, x5 =

1

5
.

Evaluate the function f(x) = 1
3
+ sin(πx) at these points:

f(x0) =
1

3
+ sin(π ⋅ 0.25) = 1

3
+ sin(π

4
) = 1

3
+
√
2

2
= 1.040440114519881

f(x1) =
1

3
+ sin(π ⋅ 0.24) = 1.017880439262022

f(x2) =
1

3
+ sin(π ⋅ 0.23) = 0.9946451986569851

f(x3) =
1

3
+ sin(π ⋅ 0.22) = 0.970757323082023

f(x4) =
1

3
+ sin(π ⋅ 0.21) = 0.9462403869863099

f(x5) =
1

3
+ sin(π ⋅ 0.20) = 0.9211185856258064

Approximate the integral using the Trapezium rule:

Ih =
h

2
(f(x0) + 2f(x1) + 2f(x2) + 2f(x3) + 2f(x4) + f(x5)) .

Substituting the values of h and f(xi):

Ih = −
1

200
(f(0.25) + 2f(0.24) + 2f(0.23) + 2f(0.22) + 2f(0.21) + f(0.20)) .

Summing the values:

Ih = −
1

200
(1.040440114519881 + 2 ⋅ 1.017880439262022 + 2 ⋅ 0.9946451986569851 + 2 ⋅ 0.970757323082023+

2 ⋅ 0.9462403869863099 + 0.9211185856258064)
= −0.04910302698060184
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The exact integral is given as

I =
1/5

∫
1/4

1

3
+ sinπxdx

= [x
3
− cos(πx)

π
]
1/5

1/4

= 1

3
(1
5
− 1

4
) − 1

π
(cos(π

5
) − cos(π

4
))

= −1
3

1

20
− 1

π
(cos(π

5
) − cos(π

4
))

= −0.04910569502763208

Thus, the error is given by ∣I − Ih∣,

∣−0.04910569502763208 − −0.04910569502763208∣ = 2.668047030231213e-6.

which is 2.67e-6.
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Question 7: Given the matrix

A =
⎛
⎜
⎝

25 15 −5
15 18 0
−5 0 11

⎞
⎟
⎠

what is the Cholesky matrix L for the matrix A?

◯
⎛
⎜
⎝

5 0 0
0 2 0
−1 5 1

⎞
⎟
⎠

◯
⎛
⎜
⎝

5 0 0
2 3 0
2 2 3

⎞
⎟
⎠

◯
⎛
⎜
⎝

5 3 3
0 3 6
0 0 3

⎞
⎟
⎠

◯
⎛
⎜
⎝

1 2 1
2 5 −4
3 8 1

⎞
⎟
⎠

◯ ( 2 1
2 5

)

◯7
⎛
⎜
⎝

5 0 0
3 3 0
−1 1 3

⎞
⎟
⎠

For the Cholesky factorization, A = LLT . The coefficients of L are given by

lk,i =
ak,i −∑i−1

j=1 li,j lk,j

li,i

and

lk,k =

¿
ÁÁÁÀak,k −

k−1
∑
j=1

l2k,j .

Thus, for the matrix

A =
⎛
⎜
⎝

25 15 −5
15 18 0
−5 0 11

⎞
⎟
⎠

then

l1,1 =
√
a1,1

=
√
25 = 5,

and subsequently

l2,1 =
a2,1

l1,1
= 15

5
= 3,

l2,2 =
√

a2,2 − l22,1
=
√
18 − 32 =

√
18 − 9 =

√
9 = 3

l3,1 =
a3,1

l1,1
= −5/5 = −1,

l3,2 =
a3,2 − l3,1 × l2,1

l2,2

= 0 − (−1) × 3
3

= 1

and finally,

l3,3 =
√

a3,3 − l23,1 − l23,2 =
√
11 − (−1)2 − 12 =

√
11 − 2 = 3.
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Thus, the answer is

L =
⎛
⎜
⎝

5 0 0
3 3 0
−1 1 3

⎞
⎟
⎠
.
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Question 8: Heun’s method for a differential equation can be written in the form:

un+1 = un +
h

2
(f (xn, un) + f (xn+1, u

∗
n+1)) where u∗n+1 = un + hf (xn, un) .

Show that for the differential equation in y(x) given by

dy

dx
= y − ln(x + 1), with y0 = 1,

that for h = 0.2, the value for u2 is given by:

◯ 1.20177

◯7 1.41063

◯ 1.33333

◯ 2.40899

◯ 0.98452

◯ −0.18431

With f(x, y) = y − ln(1 + x), the intermediate step is required first

u∗1 = u0 + hf (x0, u0)

As f(x0, u0) = f(0,1) = 1 − ln(1 + 0) = 1 − 0 = 1, thus

u∗1 = u0 + hf(x0, u0) = 1 + 0.2 × f(0,1) = 1 + 0.2 × (1 − ln(0 + 1)) = 1 + 0.2 × (1 − ln(1)) = 1 + 0.2 × (1 − 0) = 1.2

To calculate the first step, consider

f (x1, u
∗
1) = f(0.2,1.2) = 1.2 − ln(0.2 + 1) = 1.2 − ln(1.2)

which is
f(0.2,1.2) ≈ 1.2 − 0.1823 = 1.0177.

Thus u1 is then given by

u1 = 1 +
0.2

2
(1 + 1.0177)

= 1 + 0.1 × 2.0177 = 1 + 0.20177 = 1.20177.

To compute the second term, again compute the intermediate value u∗2, first noting that

f(0.2,1.20177) = 1.20177 − ln(0.2 + 1) = 1.20177 − 0.1823 ≈ 1.01947.

So that u∗2 is given by

u∗2 = 1.20177 + 0.2 × 1.01947 = 1.20177 + 0.203894 = 1.405664.

With

f (x2, u
∗
2) = f(0.4,1.405664) = 1.405664 − ln(0.4 + 1) = 1.405664 − ln(1.4) = 1.405664 − 0.3365 ≈ 1.069164,

so u2 can be evaluated as

= 1.20177 + 0.1(1.01947 + 1.069164) = 1.20177 + 0.12.088634 ≈ 1.20177 + 0.2088634 ≈ 1.4106334.

The required solution is 1.41063.
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