Constructor University Spring Semester 2024

Dr. D. Sinden

JTMS-MAT-13: Numerical Methods

Exam & Solutions: Saturday 24 August 2024

All questions carry equal marks. Answer 5 questions only. Please use the booklet provided, clearly stating which questions are to be marked.

Note that all trigonometric values should be expressed in radians.

Question 1:

- (**a**) State a condition which means a square matrix will not be invertible.
- (**b**) Given the matrix

$$
A = \begin{pmatrix} 4 & 12 & -16 \\ 12 & 40 & -38 \\ -16 & -38 & 90 \end{pmatrix},
$$

use Gaussian elimination to show the row echelon form of the matrix *A* is given by

$$
U = \begin{pmatrix} 4 & 12 & -16 \\ 0 & 4 & 10 \\ 0 & 0 & 1 \end{pmatrix}.
$$

(**c**) By applying Gaussian elimination, or any other method, show the solution to the linear equation $A\vec{x} = b$, where *b* is given by

$$
\vec{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \text{is} \quad \vec{x} = \begin{pmatrix} 110.25 \\ -24 \\ 9.5 \end{pmatrix}.
$$

- (**d**) If an *n* × *n* matrix is invertible, what is the order of the upper limit for the number of arithmetic operations to yield the inverse for Gaussian elimination?
- (**a**) A matrix is not invertible if the determinant is zero. Equivalent conditions, such as if rank is not full, or rows/columns are not linearly independent are also acceptable.
- (**b**) To express the matrix in row echelon form, start by eliminating the element in the first column of the second row by subtracting 3 times the first row from the second row:

$$
\begin{pmatrix} 4 & 12 & -16 \ 12 - 3 \cdot 4 & 40 - 3 \cdot 12 & -38 - 3 \cdot (-16) \\ -16 & -38 & 90 \end{pmatrix} = \begin{pmatrix} 4 & 12 & -16 \\ 0 & 4 & 10 \\ -16 & -38 & 90 \end{pmatrix}.
$$

Next, eliminate the element in the first column of the third row. To do this, add 4 times the first row to the third row

$$
\begin{pmatrix} 4 & 12 & -16 \ 0 & 4 & 10 \ -16 + 4 \cdot 4 & -38 + 4 \cdot 12 & 90 + 4 \cdot (-16) \end{pmatrix} = \begin{pmatrix} 4 & 12 & -16 \ 0 & 4 & 10 \ 0 & 10 & 26 \end{pmatrix}.
$$

Finally, eliminate the element in the second column of the third row by subtracting 2*.*5 times the second row from the third row

$$
\begin{pmatrix} 4 & 12 & -16 \ 0 & 4 & 10 \ 0 & 10 - 2.5 \cdot 4 & 26 - 2.5 \cdot 10 \end{pmatrix} = \begin{pmatrix} 4 & 12 & -16 \ 0 & 4 & 10 \ 0 & 0 & 1 \end{pmatrix}.
$$

The final upper triangular form of the matrix *A* is:

$$
U = \begin{pmatrix} 4 & 12 & -16 \\ 0 & 4 & 10 \\ 0 & 0 & 1 \end{pmatrix}.
$$

(**c**) Applying the elementary row operations to the righthand side vectors,

$$
\left(\begin{array}{ccc|c}4 & 12 & -16 & 1\\12 & 40 & -38 & 2\\-16 & -38 & 90 & 3\end{array}\right) \mapsto \left(\begin{array}{ccc|c}4 & 12 & -16 & 1\\0 & 4 & 10 & -1\\-16 & -38 & 90 & 3\end{array}\right) \mapsto \left(\begin{array}{ccc|c}4 & 12 & -16 & 1\\0 & 4 & 10 & -1\\0 & 10 & 26 & 7\end{array}\right)
$$

and

$$
\left(\begin{array}{ccc|c} 4 & 12 & -16 & 1 \\ 0 & 4 & 10 & -1 \\ 0 & 10 & 26 & 7 \end{array}\right) \mapsto \left(\begin{array}{ccc|c} 4 & 12 & -16 & 1 \\ 0 & 4 & 10 & -1 \\ 0 & 0 & 1 & 9.5 \end{array}\right)
$$

Thus if the unknown vector $\vec{x} = (x_1, x_2, x_3)$, then $x_3 = 9.5$, so that $4x_2 + 95 = -1 \Rightarrow x_2 = -24$ and finally $4x_1 + 12 \times 24 + 9.5 = 1 \Rightarrow x_1 = 110.25.$

(d) The number of operations is proportional to the cube of the number of rows, i.e. $\mathcal{O}(n^3)$.

Question 2

(**a**) Find the Jacobian matrix for the vector-valued function

$$
f(x,y) = \begin{pmatrix} 4x^2 - 20x + \frac{1}{4}y^2 - 8 \\ \frac{1}{2}xy^2 + 2x - 5y + 8 \end{pmatrix}.
$$

(**b**) Show the inverse of the Jacobian matrix is

$$
J^{-1} = \frac{1}{|J|} \begin{pmatrix} xy - 5 & -\frac{1}{2}y \\ -\frac{1}{2}y^2 - 2 & 4(2x - 5) \end{pmatrix}, \text{ where } |J| = 8x^2y - 20xy - 40x + 100 - \frac{1}{4}y^3 - y.
$$

- (c) Let $\vec{u}_n = (x_n, y_n)^T$. Then, using $\vec{u}_{n+1} = \vec{u}_n J^{-1}(\vec{u}_n) f(\vec{u}_n)$, with an initial guess $\vec{u}_0 = (0,0)^T$, show that the first iteration of Newton's method yields $(-0.4, 1.44)^T$.
- (**a**) Compute the partial derivatives:

$$
\frac{\partial f_1}{\partial x} = \frac{\partial}{\partial x} \left(4x^2 - 20x + \frac{1}{4}y^2 - 8 \right)
$$

\n
$$
= 8x - 20 = 4(2x - 5)
$$

\n
$$
\frac{\partial f_1}{\partial y} = \frac{\partial}{\partial y} \left(4x^2 - 20x + \frac{1}{4}y^2 - 8 \right)
$$

\n
$$
= \frac{1}{2}y
$$

\n
$$
\frac{\partial f_2}{\partial x} = \frac{\partial}{\partial x} \left(\frac{1}{2}xy^2 + 2x - 5y + 8 \right)
$$

\n
$$
= \frac{1}{2}y^2 + 2
$$

\n
$$
\frac{\partial f_2}{\partial y} = \frac{\partial}{\partial x} \left(\frac{1}{2}xy^2 + 2x - 5y + 8 \right)
$$

\n
$$
= xy - 5
$$

Thus, the Jacobian matrix *J* is:

$$
J = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} = \begin{pmatrix} 4(2x-5) & \frac{1}{2}y \\ \frac{1}{2}y^2 + 2 & yx - 5 \end{pmatrix}
$$

(**b**) For the inverse, first compute the determinant:

$$
\det(J) = 4(2x - 5)(xy - 5) - \frac{1}{2}y(\frac{1}{2}y^2 + 2)
$$

$$
= 4(2x^2y - 5xy - 10x + 25) - \frac{1}{4}y^3 - y
$$

$$
= 8x^2y - 20xy - 40x + 100 - \frac{1}{4}y^3 - y
$$

The formula for the inverse of a 2×2 matrix is given by:

$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \text{ when } \det(A) \neq 0.
$$

Thus,

$$
J^{-1} = \frac{1}{|J|} \begin{pmatrix} xy - 5 & -\frac{1}{2}y \\ -\frac{1}{2}y^2 - 2 & 4(2x - 5) \end{pmatrix}, \text{ where } |J| = 8x^2y - 20xy - 40x + 100 - \frac{1}{4}y^3 - y.
$$

[(**c**) Evaluating the inverse of the Jacobian at the initial guess yields

$$
J^{-1}(\vec{u}_0) = \frac{1}{100} \begin{pmatrix} -5 & 0 \\ -2 & -20 \end{pmatrix}.
$$

With $\vec{u}_0 = (0,0)^T$, then

so

$$
f(u_0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},
$$

$$
\vec{u}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \frac{1}{100} \begin{pmatrix} -5 & 0 \\ -2 & -20 \end{pmatrix} \begin{pmatrix} -8 \\ +8 \end{pmatrix} = \frac{1}{100} \begin{pmatrix} -40 \\ 144 \end{pmatrix}.
$$

 $f(u_0) = \begin{cases} -8 \\ +8 \end{cases}$

Question 3: Consider the integral

$$
I = \int_{1}^{2} f(x) dx = \int_{1}^{2} \frac{dx}{x} = \ln(2) = 0.6931471805599453
$$

(**a**) Given the Trapezium rule,

$$
I_n = \frac{h}{2} \left(f(x_0) + f(x_n) + 2 \sum_{i=1}^{n-2} f(x_i) \right)
$$

where $h = (b - a)/n$ and *n* is the number of intervals, show that the approximations to the integral for $n = 2^k$ where $k = 0, 1$ and 2 are

(**b**) Noting that the Trapezium rule has error behaviour

$$
I = I_n + a_1 h^2 + a_2 h^4 + \cdots
$$

for some constants *a*, and considering the difference between the errors of the Trapezium rule for *h* and *h*/2, derive the Romberg formula

$$
R_k^1=\frac{1}{3}\left(4R_k^0-R_{k-1}^0\right)
$$

where $R_0^0 = I_1$, $R_1^0 = I_2$ etc.

- (c) Using the values from the Trapezium rule for $I_k = R_k^0$, show that $R_2^1 = 0.693253$.
- (a) For the first value $h = 1$,

$$
R_0^0 = \frac{1}{2} \left(1 + \frac{1}{2} \right) = 0.75.
$$

For the second value, $k = 1$, $n = 2$,

$$
h = \frac{1-0}{2} = 0.5
$$
, $x_0 = 1$, $x_1 = 1.5$ and $x_2 = 2$.

Using the function $f(x) = \frac{1}{x}$ *x*

$$
f(1) = \frac{1}{1} = 1
$$

$$
f(1.5) = \frac{1}{1.5} = 2/3
$$

$$
f(2) = \frac{1}{2} = 0.5
$$

Substituting these values into the formula:

$$
I_1 = \frac{0.5}{2} \left(1 + 0.5 + 2 \cdot 2/3 \right) = 0.25 \left(1.5 + 4/3 \right) = 0.70833
$$

For the next value, $k = 2$, $n = 2^2 = 4$, $h = 1/4$

$$
f(1) = 1
$$

\n
$$
f(1.25) = \frac{1}{1.25} = \frac{1}{5/4} = \frac{4}{5} = 0.8
$$

\n
$$
f(1.5) = 2/3
$$

\n
$$
f(1.75) = \frac{1}{1.75} = \frac{1}{7/4} = \frac{4}{7} = 0.5714285714285714
$$

\n
$$
f(2) = 0.5
$$

Substituting these values into the formula:

$$
I_2 = \frac{0.25}{2} \left(1 + 0.5 + 2 \left(\frac{4}{5} + \frac{2}{3} + \frac{4}{7} \right) \right) = 0.69702380952
$$

(**b**) Consider the expansion for I_{i-2} and I_{i-1} , noting that I_{i-1} has twice the steps size.

$$
\int_a^b f(x) \, dx = R_{i-1}^0 + a_2 h^2 + a_4 h^4 + \dots
$$

and

$$
\int_{a}^{b} f(x) dx = R_{i}^{0} + a_{2} \left(\frac{h}{2}\right)^{2} + a_{4} \left(\frac{h}{2}\right)^{4} + \dots
$$

then an $\mathcal{O}(h^4)$ approximation is made by multiplying I_{i-1} by four and subtracting I_{i-2} . Let this be denoted by R_1^k . This gives a value which approximates three times the integral, thus the new formula is, as required

$$
R_k^1 = \frac{1}{3} \left(4R_k^0 - R_{k-1}^0 \right).
$$

(**c**) By the formula,

$$
R_2^1 = \frac{1}{3} \left(4R_2^0 - R_1^0 \right) = \frac{1}{3} \left(4 \cdot 0.69702380952 - 0.70833333333 \right) = 0.69325396825.
$$

Question 4:

- (a) For the numerical solutions of ordinary differential equations, $y' = f(y, t)$, what is an explicit method?
- (**b**) Using a Taylor expansion, show the forward Euler scheme for a first-order differential equation is

$$
y_{n+1} = y_n + h f\left(y_n, t_n\right)
$$

where y_n denotes the solution at $t_n = t_0 + nh$ for a time step *h* and initial condition $y(t_0)$.

(**c**) For the second-order linear ordinary differential equation

$$
y''(t) = -4y'(t) + y(t)
$$
 with $y(0) = 1$ and $y'(0) = 1$

show, by considering the backward difference approximation $\nabla \vec{u}(t_{n+1}) \approx (\vec{u}_{n+1} - \vec{u}_n)/h$, where $\vec{u} = (y, y')$ and \vec{u}_n denotes the solution at $t_n = t_0 + nh$, that the backward Euler scheme yields

$$
\vec{u}_{n+1} = \frac{1}{1 + 4h - h^2} \begin{pmatrix} 1 + 4h & -h \\ -h & 1 \end{pmatrix} \vec{u}_n.
$$

- (**d**) Compute the first two steps of the backward Euler scheme for the system given in (**c**) with $h = 0.1$.
- (**a**) The function to be solved only involves the current and past values of the unknown function.
- (**b**) The Taylor expansion is given by

$$
y(t_{n+1}) = y(t_n + h) = y(t_n) + hy'(t_n) + \frac{h^2}{2!}y''(t_n) + \cdots
$$

where $t_{n+1} = t_n + h$ and h is the step size. For the forward Euler scheme, we will truncate the series after the first-order term

 $y(t_{n+1}) \approx y(t_n) + hy'(t_n)$

and as $y'(t_n) = f(t_n)$, so

$$
y_{n+1} = y_n + h f(t_n, y_n).
$$

(c) Rearranging the expression, yields $\vec{u}_{n+1} = \vec{u}_n + h\nabla(\vec{u}_{n+1})$ The backwards Euler scheme is given by u_{n+1} $u_n + hf(u_{n+1}),$ i.e. $\vec{v}_{n+1} = \vec{v}_n + hA\vec{v}_{n+1}$ as the system is linear and can be written as $\nabla \nabla v = A\vec{v}$. Thus, $(I - hA)\vec{v}_{n+1} = \vec{v}_n$, so that $\vec{v}_{n+1} = (I - hA)^{-1} \vec{v}_n$. The inverse of the matrix for the linear system is then given by

$$
(I - hA)^{-1} = \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - h \begin{pmatrix} 0 & 1 \\ 1 & -4 \end{pmatrix} \right)^{-1}
$$

$$
= \begin{pmatrix} 1 & -h \\ -h & 1 + 4h \end{pmatrix}^{-1}
$$

$$
= \frac{1}{1 + 4h - h^2} \begin{pmatrix} 1 + 4h & -h \\ -h & 1 \end{pmatrix}.
$$

(d) With step size $h = 0.1$, then two steps, \vec{u}_1 and \vec{u}_2 , must be computed from the initial data $\vec{u}_0 = (0,1)$.

Using the matrix derived in the formula given, the solution at $t = 0.1$ is given by

$$
\vec{u}_1 = \frac{1}{1 + 4 \times 0.1 - 0.1^2} \begin{pmatrix} 1 + 4 \times 0.1 & -0.1 \\ -0.1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

$$
= \frac{100}{139} \begin{pmatrix} 1.4 & -0.1 \\ -0.1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

$$
= \frac{100}{139} \begin{pmatrix} 140 & -10 \\ -10 & 100 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

$$
= \frac{100}{139} \begin{pmatrix} 140 & -10 \\ -10 & 100 \end{pmatrix}
$$

$$
= \begin{pmatrix} -10/139 \\ 100/139 \end{pmatrix}
$$

$$
= \begin{pmatrix} -0.071942 \\ 0.719424 \end{pmatrix}.
$$

The second step is then given by

$$
\begin{aligned}\n\vec{u}_2 &= \frac{1}{139} \begin{pmatrix} 140 & -10 \\ -10 & 100 \end{pmatrix} \begin{pmatrix} -10/139 \\ 100/139 \end{pmatrix} \\
&= \begin{pmatrix} 1.007194 & -0.07194244604316546 \\ -0.07194244604316546 & 0.7194244604316546 \end{pmatrix} \begin{pmatrix} -0.071942 \\ 0.719424 \end{pmatrix} \\
&= \begin{pmatrix} -0.12421717 \\ 0.52274727 \end{pmatrix}.\n\end{aligned}
$$

Question 5: Integrals can be numerically evaluated using the composite Simpson's $1/3$ rule, which is given by

$$
I = \int_{a}^{b} f(x) dx \approx \frac{h}{3} \left(f(x_0) + 4 \sum_{i=1}^{n/2} f(x_{2i-1}) + 2 \sum_{i=1}^{n/2-1} f(x_{2i}) + f(x_n) \right)
$$

where $x_i = a + ih$, with $h = (b - a)/n$ for $i = 0, \ldots, n$, where n , the number of subintervals, is even. Given the integral

$$
I = \int_0^1 \frac{1}{3} + \cos(\pi x) \, \mathrm{d}x
$$

what is the difference between the exact and the approximate integral using Simpson's rule with six subintervals?

The integral is given by:

$$
I = \int_0^1 \frac{1}{3} + \cos(\pi x) \, dx = \left[\frac{x}{3} - \frac{\sin(\pi x)}{\pi} \right]_0^1
$$

= $\left[\frac{x}{3} \right]_0^1 - \left[\frac{\sin(\pi x)}{\pi} \right]_0^1$
= $\frac{1}{3} - 0 - \frac{1}{\pi} (\sin(0) - \sin(\pi)) = \frac{1}{3}$

For the approximation, with $a = 0$, $b = 1$, and $n = 6$:

$$
\Delta x = \frac{1-0}{6} = \frac{1}{6}.
$$

The points x_i are:

$$
x_0 = 0
$$
, $x_1 = \frac{1}{6}$, $x_2 = \frac{2}{6} = \frac{1}{3}$, $x_3 = \frac{1}{2}$, $x_4 = \frac{2}{3}$, $x_5 = \frac{5}{6}$ and $x_6 = 1$.

The function values $f(x_i) = \frac{1}{3}$ $\frac{1}{3}$ + cos(πx_i) are:

$$
f(x_0) = \frac{1}{3} + \cos(0) = \frac{1}{3} + 1 = \frac{4}{3},
$$

\n
$$
f(x_1) = \frac{1}{3} + \cos\left(\frac{\pi}{6}\right) = \frac{1}{3} + \frac{\sqrt{3}}{2},
$$

\n
$$
f(x_2) = \frac{1}{3} + \cos\left(\frac{\pi}{3}\right) = \frac{1}{3} + \frac{1}{2} = \frac{5}{6},
$$

\n
$$
f(x_3) = \frac{1}{3} + \cos\left(\frac{\pi}{2}\right) = \frac{1}{3} + 0 = \frac{1}{3},
$$

\n
$$
f(x_4) = \frac{1}{3} + \cos\left(\frac{2\pi}{3}\right) = \frac{1}{3} - \frac{1}{2} = -\frac{1}{6},
$$

\n
$$
f(x_5) = \frac{1}{3} + \cos\left(\frac{5\pi}{6}\right) = \frac{1}{3} - \frac{\sqrt{3}}{2},
$$

\n
$$
f(x_6) = \frac{1}{3} + \cos(\pi) = \frac{1}{3} - 1 = -\frac{2}{3}.
$$

Now apply Simpson's rule:

$$
I \approx \frac{\Delta x}{3} \left[f(x_0) + 4(f(x_1) + f(x_3) + f(x_5)) + 2(f(x_2) + f(x_4)) + f(x_6) \right].
$$

= $\frac{1/6}{3} \left[\frac{4}{3} + 4 \left(\frac{1}{3} + \frac{\sqrt{3}}{2} + \frac{1}{3} + \frac{1}{3} - \frac{\sqrt{3}}{2} \right) + 2 \left(\frac{5}{6} - \frac{1}{6} \right) - \frac{2}{3} \right].$

Simplify the sums:

$$
I \approx \frac{1}{18} \left[\frac{4}{3} + 4 \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right) + 2 \left(\frac{4}{6} \right) + -\frac{2}{3} \right].
$$

\n
$$
= \frac{1}{18} \left[\frac{4}{3} + 4 + 2 \left(\frac{2}{3} \right) + -\frac{2}{3} \right]
$$

\n
$$
= \frac{1}{18} \left[\frac{4}{3} + \frac{12}{3} + \frac{4}{3} - \frac{2}{3} \right]
$$

\n
$$
= \frac{1}{18} \left[\frac{4 + 12 + 4 - 2}{3} \right]
$$

\n
$$
= \frac{1}{18} \left[\frac{18}{3} \right]
$$

\n
$$
= \frac{1}{3}.
$$

Thus, the difference between the approximation and the exact value is

$$
\left|\frac{1}{3} - \frac{1}{3}\right| = 0
$$

Question 6: Given the following data:

$$
\begin{array}{c|cc} i & 0 & 1 & 2 \\ \hline x_i & 0 & 2 & 4 \\ y_i & 2 & 1 & 2 \end{array}
$$

Newton interpolation constructs a interpolating polynomial $p(x)$, using the formula $p = \sum_{i=0}^{n} \alpha_i n_i(x)$, where the basis polynomials are defined as

$$
n_0(x) = 1, \quad n_i(x) = (x - x_0)(x - x_1) \cdots (x - x_{i-1})
$$

where $p(x_i) = y_i$. Using Newton interpolation, which are the correct collocation matrix Φ and weighting vector $\vec{\alpha}$ such that $\Phi \vec{\alpha} = \vec{y}$ where $\vec{\alpha} = (\alpha_0, \alpha_1, \alpha_2)$ and $\vec{y} = (y_0, y_1, y_2)$.

The Newton interpolating polynomial can be written in the form:

$$
p(x) = \alpha_0 + \alpha_1 (x - x_0) + \alpha_2 (x - x_0) (x - x_1)
$$

For the given data points (x_0, y_0) , (x_1, y_1) and (x_2, y_2) , the collocation matrix Φ is constructed by evaluating the basis functions of the Newton polynomial at each x_i , where the basis functions are given by $n_0 = 1$, $n_1 = x - x_0$ and $n_2 = (x - x_0)(x - x_1)$.

- For $x_0 = 0$, $n_0(x_0) = 1$, $n_1(x_0) = 0$ and $n_2(x_0) = 0$.
- For $x_1 = 2$, $n_0(x_1) = 1$, $n_1(x_1) = 2$ and $n_2(x_1) = 0$.
- For $x_2 = 4$, $n_0(x_2) = 1$, $n_1(x_2) = 4$ and $n_2(x_2) = 8$.

The system $\Phi \vec{\alpha} = \vec{y}$ is

$$
\begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 4 & 8 \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}
$$

Therefore, the correct collocation matrix Φ is:

$$
\Phi = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 4 & 8 \end{pmatrix}.
$$

and

$$
\vec{\alpha} = \begin{pmatrix} 2 \\ -1/2 \\ 1/4 \end{pmatrix}.
$$

 $\overline{2}$ ⁺ *x* $\frac{x}{4}(x-2)$

 $p = 2 - \frac{x}{2}$

So that

Question 7: Using the Jacobi scheme, $\vec{x}_{n+1} = (I - D^{-1}A)\vec{x}_n + D^{-1}b$, where *D* is the diagonal matrix of *A*, what is the second iterate, \vec{x}_2 , of the solution to the system $Ax = b$ with

.

$$
A = \begin{pmatrix} 4 & 12 & -16 \\ 12 & 40 & -38 \\ -16 & -38 & 90 \end{pmatrix}, \quad \vec{x}_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{ and } \vec{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
$$

\n
$$
\bigcirc \begin{pmatrix} 0.456 \\ 0.7421 \\ -0.8123 \end{pmatrix}
$$

\n
$$
\bigcirc \begin{pmatrix} 1.7326 \\ -0.6034 \\ 0.6777 \end{pmatrix}
$$

\n
$$
\bigcirc \begin{pmatrix} 0.6789 \\ 0.2481 \\ 0.6111 \end{pmatrix}
$$

\n
$$
\bigcirc \begin{pmatrix} 0.0013 \\ 0.0299 \\ 3.5217 \end{pmatrix}
$$

\n
$$
\bigcirc \begin{pmatrix} 2.9876 \\ 0.1234 \\ 2.3540 \end{pmatrix}
$$

First, extract the diagonal matrix *D* from *A*:

$$
D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 40 & 0 \\ 0 & 0 & 90 \end{pmatrix}.
$$

Next, compute *D*−¹ :

$$
D^{-1}=\begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{40} & 0 \\ 0 & 0 & \frac{1}{90} \end{pmatrix}.
$$

Now, compute the matrix $I - D^{-1}A$:

$$
D^{-1}A = \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{40} & 0 \\ 0 & 0 & \frac{1}{90} \end{pmatrix} \begin{pmatrix} 4 & 12 & -16 \\ 12 & 40 & -38 \\ -16 & -38 & 90 \end{pmatrix} = \begin{pmatrix} 1 & 3 & -4 \\ 0.3 & 1 & -0.95 \\ -\frac{8}{45} & -\frac{19}{45} & 1 \end{pmatrix}.
$$

$$
I - D^{-1}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 3 & -4 \\ 0.3 & 1 & -0.95 \\ -\frac{8}{45} & -\frac{19}{45} & 1 \end{pmatrix} = \begin{pmatrix} 0 & -3 & 4 \\ -0.3 & 0 & 0.95 \\ \frac{8}{45} & \frac{19}{45} & 0 \end{pmatrix}.
$$

Next, compute D^{-1} *b*:

$$
D^{-1}\vec{b} = \begin{pmatrix} 1/4 & 0 & 0 \\ 0 & 1/40 & 0 \\ 0 & 0 & 1/90 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/4 \\ 1/40 \\ 1/90 \end{pmatrix}.
$$

Now, iteratively compute \vec{x}_1 and then \vec{x}_2

$$
\vec{x}_1 = \left(I - D^{-1}A\right)\vec{x}_0 + D^{-1}\vec{b} = \begin{pmatrix} 0 & -3 & 4 \\ -\frac{3}{10} & 0 & \frac{19}{20} \\ \frac{8}{45} & \frac{19}{45} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1/4 \\ 1/40 \\ 1/90 \end{pmatrix}.
$$

First, compute the matrix-vector product:

$$
\begin{pmatrix} 0 & -3 & 4 \ -0.3 & 0 & 0.95 \ \frac{8}{45} & \frac{19}{45} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 - 3 + 4 \\ -0.3 + 0 + 0.95 \\ \frac{8}{45} + \frac{19}{45} \end{pmatrix} = \begin{pmatrix} 1 \\ 0.65 \\ \frac{27}{45} \end{pmatrix}.
$$

So

So

$$
\vec{x}_1 = \begin{pmatrix} 1 \\ 0.65 \\ 0.6 \end{pmatrix} + \begin{pmatrix} 1/4 \\ 1/40 \\ 1/90 \end{pmatrix} = \begin{pmatrix} 1.25 \\ 0.675 \\ 0.6111 \end{pmatrix}.
$$

The \vec{x}_2 is given by

So:

$$
\vec{x}_2 = \left(I - D^{-1}A\right)\vec{x}_1 + D^{-1}\vec{b} = \begin{pmatrix} 0 & -3 & 4 \\ -0.3 & 0 & 0.95 \\ \frac{8}{45} & \frac{19}{45} & 0 \end{pmatrix} \begin{pmatrix} 1.25 \\ 0.675 \\ 0.6111 \end{pmatrix} + \begin{pmatrix} 1/4 \\ 1/40 \\ 1/90 \end{pmatrix}.
$$

Compute the matrix-vector product:

$$
\begin{pmatrix}\n0 & -3 & 4 \\
-0.3 & 0 & 0.95 \\
\frac{8}{45} & \frac{19}{45} & 0\n\end{pmatrix}\n\begin{pmatrix}\n1.25 \\
0.675 \\
0.6111\n\end{pmatrix} =\n\begin{pmatrix}\n0 - 2.025 + 2.4444 \\
-0.375 + 0 + 0.580545 \\
\frac{10}{45} + \frac{12.825}{45}\n\end{pmatrix} =\n\begin{pmatrix}\n0.4194 \\
0.205545 \\
0.5072\n\end{pmatrix}.
$$
\n
$$
\vec{x}_2 = \begin{pmatrix}\n0.4194 \\
0.205545 \\
0.5072\n\end{pmatrix} + \begin{pmatrix}\n1/4 \\
1/40 \\
1/90\n\end{pmatrix} = \begin{pmatrix}\n0.6694 \\
0.230545 \\
0.5183\n\end{pmatrix}.
$$

⎝

 \prime

⎝

⎠

⎠

⎝

Therefore, the second iterate \vec{x}_2 is approximately:

$$
\vec{x}_2 = \begin{pmatrix} 0.6694 \\ 0.2305 \\ 0.5183 \end{pmatrix}.
$$

Question 8: The differential equation

$$
y'(t) = 1 - 3y(t)
$$
 with $y(0) = 1$

has the exact solution $y = \frac{1}{3}$ $\frac{1}{3}(2e^{-3t}+1)$. From the explicit Runge-Kutta scheme given by the Butcher array

$$
\begin{array}{c|cc}\n0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 0 & 1 \\
\hline\n& 1/6 & 1/3 & 1/3 & 1/6\n\end{array}
$$

where

$$
u_{k+1} = u_k + h \sum_{i=1}^{4} b_i f\left(u_k + h \sum_{j=1}^{4} a_{i,j} k_j, t_k + c_i h\right)
$$

and using step size $h = 0.1$, what is the $|y(2h) - u_2|$, i.e. the global truncation error after two steps?

Using the formula given, the Butcher array yields a Runge-Kutta scheme of the form:

$$
k_1 = hf (u_n, t_n)
$$

\n
$$
k_2 = hf (u_n + hk_1/2, t_n + h/2)
$$

\n
$$
k_3 = hf (u_n + hk_2/2, t_n + h/2)
$$

\n
$$
k_4 = hf (u_n + hk_3, t_n + h)
$$

for the function which is not dependent on time

$$
f(u_n) = 1 - 3u_n
$$

which generates the next value via

$$
u_{n+1} = u_n + (h/6) (k_1 + 2k_2 + 2k_3 + k_4),
$$

Given the initial condition and the step size, to compute two time steps means to compute approximations to *y*(0*.*1) and *y*(0*.*2). For the first time step, with $u_0 = 1.0$ and $h = 0.1$,

$$
k_1 = h f(u_0) = 0.1 (1-3) = -0.2.
$$

Thus the first step can be computed using the values

$$
k_1 = -0.2
$$
, $k_2 = -0.197$, $k_3 = -0.197045$ and $k_4 - 0.19408865$.

So that

$$
u_1 = 1.0 + (0.1/6)(-0.2 - 2 \cdot 0.197 - 2 \cdot 0.197045 - 0.19408865) = 0.9802970225.
$$

The second evaluation yields

$$
k_1 = -0.1940891
$$
, $k_2 = -0.1911778$, $k_3 - 0.1912214$ and -0.1883525

Thus $u_2 = 0.9611764$.

The exact values are given by $y(0.1) = 0.8272122$ and $y(0.2) = 0.6992078$, thus the difference at $t = 0.2$ is ∣*y*(0*.*2) − *u*²∣ = 0*.*26196860*.*