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MECH1010 2 Standard Integrals

Recommended Reading

- K. A. Stroud, Engineering Mathematics London: Palgrave Macmillan, 6th Revised edition.

1 Introduction

The preliminary stages of this course are intended to reacquaint you with standard material in
order to investigate the applications of integration in engineering .

There are two types of integration - definite and indefinite. An indefinite integral is the anti-
derivative of a function f (x), i.e. let

f ′ (x) =
df (x)

dx

then
∫

f ′ (x) dx = f (x) + c

where c is the constant of integration. The constant of integration appears as information is lost when
a constant is differentiated. However, the constant of integration can be determined by knowing the
value of the function at a given point such as the initial conditions of the function, i.e. f (0).

f ′ (x)

integration
**
f (x)

differentiation

kk

Example 1.1. If f (x) = x2 + 4x + 5 so then f (0) = 5. On differentiation f ′ (x) = 2x + 4. On in-

tegration
∫

f ′ (x) dx = x2 + 4x + c. In order to ascertain the value of c we need to set x = 0. Thus

c = 5.

2 Standard Integrals

There are no infallible rules by which we can ascertain the indefinite integral of any
given function. We are best served by the combination of experience and a systematic ap-
proach to the problem. Accordingly, the recognition of standard integrals is perhaps the
most important skill required in integral calculus. You should, therefore be thoroughly
familiar with, or make yourself thoroughly familiar with, the following standard results:
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MECH1010 2 Standard Integrals

∫

xn dx =
xn+1

n + 1
+ c (1a)

∫

1

x
dx = ln |x| + c (1b)

∫

ax dx =
ax

ln |a| + c (1c)

⇒
∫

ex dx = ex + c (1d)
∫

sinxdx = − cos x + c (1e)
∫

cos xdx = sinx + c (1f)
∫

sec2 xdx = tanx + c (1g)
∫

cosec2xdx = − cot x + c (1h)
∫

sinhxdx = cosh x + c (1i)
∫

cosh xdx = sinhx + c (1j)
∫

sech2xdx = tanhx + c (1k)
∫

cosech2xdx = − cothx + c (1l)

These standard integrals are directly obtained by writing the standard derivatives in reverse.
Another, family of standard integrals are the logarithmic and inverse trigonometric forms

∫

1√
a2 − x2

dx = sin−1 x

a
+ c (2a)

∫

1√
a2 + x2

dx = sinh−1 x

a
+ c (2b)

−
∫

1√
a2 − x2

dx = cos−1 x

a
+ c (2c)

∫

1√
x2 − a2

dx = cosh−1 x

a
+ c (2d)

∫

1

a2 + x2
dx =

1

a
tan−1 x

a
+ c (2e)

∫

1

a2 − x2
dx =

1

a
tanh−1 x

a
+ c (2f)

∫

1

x2 − a2
dx =

1

2a
ln

∣

∣

∣

∣

x − a

x + a

∣

∣

∣

∣

+ c (2g)

3



MECH1010 2 Standard Integrals

2.1 Extending the Standard Integral Forms

A polynomial expression can be integrated term by term, including each constant of integration
into a single term

Example 2.1. Consider the indefinite integral
∫

(

8x3 + 36x2 + 54x + 27
)

dx =

∫

8x3 dx +

∫

36x2 dx +

∫

54xdx +

∫

27 dx
∫

8x3 dx = 2x4 + c1

∫

36x2 dx = 12x3 + c2

∫

54xdx = 27x2 + c3

∫

27 dx = 27x + c4

= 2x4 + 12x3 + 27x2 + 27x + c

where c = c1 + c2 + c3 + c4.

The standard integral form can be readily extended by a linear change of variables

Example 2.2. Noting that

f (x) =
(

8x3 + 36x2 + 54x + 27
)

= (2x + 3)3

Then implies that the integral
∫

f (x) dx =

∫

(

8x3 + 36x2 + 54x + 27
)

dx =

∫

(2x + 3)3 dx

Now let h = 2x + 3. Hence,
dh

dx
= 2. Thus dx =

1

2
dh, so the integral to solve now becomes

∫

(2x + 3)3 dx =

∫

h3 dx

=
1

2

∫

h3 dh

=
1

6
h4 + c

=
1

6
(2x + 3)4 + c.

Example 2.3. Find the indefinite integral
∫

1

4x + 3
dx

thus let h = 4x + 3, then
dh

dx
= 4, so that dx =

1

4
dh

∫

1

4x + 3
dx =

∫

1

h
dx

=
1

4

∫

1

h
dh

=
1

4
ln |4x + 3| + c.
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MECH1010 3 Definite Integrals & Applications

y = f (x)

P (x, y)

A

δA

x x + δx

δx

Figure 1: Integration: as δx decreases so does the error

Example 2.4. Find the indefinite integral
∫

sin (2x + 1) dx

thus let h = 2x + 1, then
dh

dx
= 2, hence dx =

1

2
dh

∫

sin (2x + 1) dx = −1

2
cos (2x + 1) + c.

3 Definite Integrals & Applications

3.1 Areas Under Curves

The area bounded by a curve and the x-axis may be found from reducing the problem to an
elemental form. Consider a point P on the curve y = f (x) at x, that is P (x, y = f (x)). We can
define a rectangular elemental of area to be given by

δA ≈ f (x) δx.

This implies that

f (x) ≈ δA

δx
.

If the width of the rectangle tends to zero, that is δx → 0, then δA becomes equal to the area
bounded by the curve and the x-axis between x and δx. Thus

f (x) =
dA

dx

Thus, f (x) is equal to the derivative of the area A enclosed between the curve and the x-axis with
respect to x. Consequently the area A corresponds to the integral of the function f (x).

A definite integral is the area under the curve given by f (x) between two values a and b, say. The
integral is called a definite integral as it is a integral with defined limits. The constant of integration
disappears in the subtraction leaving a numerical value. Let F (x) denote the integral of f (x), that
is

F (x) =

∫

f (x) dx

5



MECH1010 3 Definite Integrals & Applications

then
∫ b

a
f (x) dx = F (b) − F (a) .

Hence
∫ a

a
f (x) dx = F (a) − F (a) = 0.

We can also infer that

−
∫ b

a
f (x) dx = F (a) − F (b) =

∫ a

b
f (x) dx.

Thus if we reverse the integration from b to a we are simply changing the sign of the interval over
which the integration is performed. If we are integrating from a to c, we can sub-divide the problem
at an intermediate point b

∫ c

a
f (x) dx =

∫ b

a
f (x) dx +

∫ c

b
f (x) dx = F (b) − F (a) + F (c) − F (b) = F (c) − F (a).

Care is required though, for example
∫ 1

0

4x (x − 1) (x − 2) dx =

∫ 1

0

4x3 − 12x2 + 8xdx

=
[

x4 − 4x3 + 4x2
]1

0

= 1 − 0

= 1.

We may now solve the same integral over a larger range
∫ 2

0

4x (x − 1) (x − 2) dx =

∫ 2

0

4x3 − 12x2 + 8xdx

=
[

x4 − 4x3 + 4x2
]2

0

= 0 − 0

= 0.

Can the area be zero? How is this possible? If the curve has a negative value, the integral gives a
negative area. Therefore, care must be taken when part of the area is above the x-axis and part
below it, in order to avoid areas of opposite sign cancelling each other out. Thus, it is wise to sketch
the curve before carrying out the integration and, if necessary, to calculate the positive and negative
parts separately. For the previous case

A =

∣

∣

∣

∣

∫ 1

0

f (x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

4x3 − 12x2 + 8xdx

∣

∣

∣

∣

= 1,

B =

∣

∣

∣

∣

∫ 2

1

f (x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 2

1

4x3 − 12x2 + 8xdx

∣

∣

∣

∣

= |−1| = 1

Thus the total area is A + B = 2.

3.2 Horizontal Elements

Instead of the area between a curve and the x-axis, we may require the area between a curve
and the y-axis. In this case it can be more convenient to choose a thin horizontal element area δA
approximated by a rectangle with width δy and length x so that δA ≈ xδy = f (y) δy. The total
area required is found from the summation of the horizontal area elements between the given limits.
Therefore in the limiting case as lim δy → 0, we have A =

∫ b
a dA =

∫ b
a f(y) dy.

6



MECH1010 3 Definite Integrals & Applications

f (x) = 4x (x − 1) (x − 2)

A

Bδx

δA

0

1

2

−1

−2

1 2

Figure 2: Areas between curves

1

2

3

1 2

a

b
x = f(y)

δy

δA
1

2

3

1 2

Figure 3: Horizontal elements
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1
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3

4

5

6

7

8

1 2

1

2

3

4

5

6

7

8

1 2

y1 = x2

y2 = 8 − x2δx
1

2

3

4

5

6

7

8

1 2

Figure 4: Areas between curves

3.3 Compound Areas

The basic method can readily be extended to more complicated areas and shapes provided that
a suitable element can be defined.

Example 3.1. In order to find the size of the shaded area between y1 = x2, y2 = 8 − x2 and the x-

and y-axes, we could find the area beneath each of the two curves separately and subtract them or

we could define an elemental area δA which approximates an elemental area of width δx and height

y2 − y1. Thus, in the limit lim δx → 0,

A =

∫ 2

0

y2 − y1 dx

=

∫ 2

0

(

8 − x2
)

− x2 dx

=

∫ 2

0

8 − 2x2 dx

=

[

8x − 2

3
x3

]2

0

=
32

3

8



MECH1010 4 Solids of Revolution

a bδA

δV

Figure 5: Solids of revolution

4 Solids of Revolution

If an object is rotated about a straight line it forms a three dimensional object known as a solid
of revolution. The volume of this three-dimensional object can be found using integration and is
known as a volume of integration. The method for calculating the volume of revolution is

(i) Define a rectangular area element with width δx and height y = f (x), i.e δA ≈ yδx.

(ii) Rotate it about the x-axis to generate a cylindrical volume element δV

δV ≈ πy2δx = πf2 (x) δx.

(iii) The total volume of the solid of revolution V is given by the sum of all the individual elements
δV in the limit δx → 0

V =

∫ b

a
dV = π

∫ b

a
y2 dx = π

∫ b

a
f2 (x) dx.

Example 4.1. Consider the volume of revolution formed by rotating the area bounded by the x-axis,

the ordinates x = 1 and x = 5 and the curve y = 2x + 6 about the x-axis. Therefore δV ≈ πy2δx =
π (2x + 6)2 δx The total volume of the solid, V , is the summation of the volume elements δV between

x = 1 and x = 5 as δx → 0, that is

V =

∫ 5

1

dV

= π

∫ 5

1

(2x + 6)2 dx

=
π

6

[

(2x + 6)3
]5

1
=

1792π

3
.

9



MECH1010 4 Solids of Revolution

1 5

δA

δV

Figure 6: Volume of revolution

a

b

δA δV

Figure 7: Rotations About the y-Axis

4.1 Rotations About the y-Axis

If we wish to calculate the volume of revolution by rotating an area between a curve and the y-
axis about the y-axis, we can use horizontal rectangular elements with width δy and length x = f (y).
The elemental volume is given by

δV ≈ πx2δy = πf2 (y) δy.

Again, the total volume is the sum of the elemental volume elements contained within the solid of
revolution as volume of each element tends to zero.

V =

∫ b

a
dV = π

∫ b

a
f2 (y) dy.

4.2 Compound Volumes

The basic method of summation is readily extended to more complex solids of revolution. Con-
sider the area A′ABB′ rotated about the y-axis to form a solid of revolution. Define a rectangular

10



MECH1010 5 Polar Coordinates

δx

A

A′ B′

B

δx

f(x)

Figure 8: Compound volumes

element of thickness δx and area δA ≈ yδx. We can obtain volume elements δV by rotating the
area δA around the circumference 2πx. The elemental volume is then given by

δV ≈ 2πxyδx = 2πxf (x) δx.

Once again,

V = 2π

∫ b

a
xf (x) dx.

Example 4.2. Find the volume generated when the plane figure bounded by the curve

y = f (x) = x2 + 5, the y-axis and the ordinates x = 1 and x = 3 is rotated about the y-axis through

a complete revolution. Thus let a volume element be given by

δV ≈ 2πx
(

x2 + 5
)

δx = 2π
(

x3 + 5x
)

δx.

Then

V =

∫ 3

1

dV

= 2π

∫ 3

1

x3 + 5xdx

= 2π

[

x4

4
+

5x2

2

]3

1

= 80π.

5 Polar Coordinates

The position of a point, P , in a plane can be expressed in terms of polar coordinates (r, θ), rather
than Cartesian coordinates (x, y), i.e. P = P (r, θ). It is often advantageous to solve problems in this
setting.

x = r cos θ, r =
√

x2 + y2 ,

y = r sin θ, θ = tan−1 y

x
.

P (r, θ)

r

θ θ = 0

r = 0

The general approach is identical to that applied in the case of Cartesian coordinates, i.e.

11



MECH1010 6 Parametric Equations

P (r, θ)

θ=θ1

θ=θ2
r = f (θ)

A

δθ

δA

P (r, θ)

δθ

r

δA

r sin δθ

r cos δθ

Figure 9: Areas in polar coordinates

(i) Define a small area or volume element.

(ii) Determine the elemental value of the property of interest.

(iii) Sum the elemental values over the total area or volume required.

Consider the area under a curve r = f (θ) between the limits θ = θ1 and θ = θ2. In this case we take
a thin triangular element δA where

δA ≈ 1

2
r2 sin δθ cos δθ.

As δθ is small we may approximate sin δθ ≈ δθ and cos δθ ≈ 1, hence

δA ≈ 1

2
r2δθ.

Therefore in the limit as δθ → 0

A =

∫ θ2

θ1

dA =
1

2

∫ θ2

θ1

r2dθ.

6 Parametric Equations

In addition to Cartesian and polar coordinates, we are often required to deal with parametric
equations. Consider a curve given by the parametric equations

x = a cos θ and y = b sin θ.

This is the parametric form of an ellipse. Often we are required to find the area under the curve
between x = 0 and x = a.

(i) Choose a thin vertical element of height y and width δx. Thus the area is given by A =
∫ a
0

ydx.

(ii) Express the integral, including the limits of integration, in terms of the parameter θ.

12



MECH1010 7 Arc-Lengths & Curved Surface Areas

The limits of integration in terms of the parameter θ can easily be found: when x = 0 then cos θ = 0

thus θ = π/2. Similarly when x = a then θ = 0. As x = a cos θ, then
dx

dθ
= −a sin θ, thus we may

say that dx = −a sin θ dθ. Hence the integral becomes

A = −ab

∫ 0

π/2

sin2 θ dθ

Using the double-angle formula sin2 θ =
1

2
(1 − cos 2θ)

A = −ab

2

∫ 0

π/2

(1 − cos 2θ) dθ

= −ab

2

[

θ − 1

2
sin 2θ

]0

π/2

= −ab

2

(

0 − π

2

)

=
πab

4
.

b

a
δx

δA

A

7 Arc-Lengths & Curved Surface Areas

Consider the general arc AB

A

x1

y1

B

x2

y2

x x+δx

δx
δx

δy

δs

√ (δ
x)
2 +

(δ
y)
2

13



MECH1010 8 First Moments & Centres of Gravity

Let a small element of the arc be δs. The approximate length of this element if given by δs ≈
√

(δx)2 + (δy)2 . Hence δs maybe written as

δs ≈ δx

√

1 +

(

δy

δx

)2

or δs ≈ δy

√

1 +

(

δx

δy

)2

.

Therefore the complete arc-length from A to B is

s =

∫ x2

x1

√

1 +

(

dy

dx

)2

dx or s =

∫ y2

y1

√

1 +

(

dx

dy

)2

dy.

If the curve is given by a parametric equation so that x = x (θ) and y = y (θ) then the approximate
arc-length element is given by

δs ≈ δθ

√

(

δy

δθ

)2

+

(

δy

δθ

)2

⇒ s =

∫ θ2

θ1

√

(

dy

dθ

)2

+

(

dx

dθ

)2

dθ.

These formulae can be extended to find the curved surface of area of a solid of revolution S. Consider
the curve AB rotated about the x-axis to form a thin shell

δS ≈ 2πyδx

√

1 +

(

δy

δx

)2

.

Summing these elements in the limit as δx → 0 yields

S = 2π

∫ x2

x1

y

√

1 +

(

dy

dx

)2

dx.

8 First Moments & Centres of Gravity

Given a system of masses, it is possible to define a point at which the entire system’s mass can
be assumed to be concentrated. This point is called the centre of mass. Because of its definition,
a body made of a single mass m =

∑n
i mi concentrated at the centre of mass will behave like the

system which respect to the moment along the axis

xcmm =
n

∑

i=1

ximi.

The sum of the individual moments due to each mass has to be equal to the moment of the equivalent
global mass concentration at the centre of mass. Therefore

xcm =

∑n
i=1

ximi

m
=

∑n
i=1

ximi
∑n

i mi
.

In the context of a constant gravitational field, the centre of mass is coincident with the centre of
gravity.

Example 8.1. For the system of masses illustrated where is the centre of mass?

14



MECH1010 8 First Moments & Centres of Gravity

x1 = 10 x2 = 20 x3 = 70

m1 = 50
m2 = 29

m3 = 100

x̄

0

x̄ =

∑3

i=1
ximi

∑3

i=1
mi

=
10 · 50 + 20 · 29 + 70 · 100

50 + 29 + 100

= 45

For a continuous body, C, of total mass m, the problem of determining the centre of mass can
be reduced to elemental form.

(i) Define a elemental mass δm.

(ii) The distance in the yz-plane to the mass is x, thus compute the elemental moment δM ≈ xδm.

(iii) Thus the first moment of mass M of the body C about the yz-plane is given by

M =

∫

xdm as δm → 0.

The distance between the yz-plane and the centre of gravity is denoted by x̄ and is given by

mx̄ = M ⇒ x̄ =

∫

xdm

m
.

8.1 Centroid of Volume

If a body C has volume V has uniform density, i.e. ρ =const., then

m = ρV ⇒ dm = ρ dV.

Then the distance to the centre of mass x̄ is given by

x̄ =
1

ρV

∫

xρdV =
1

V

∫

xdV.

The centroid of volume is simply the first moment of volume divided by the volume of the body.
If the density is constant then the centroid of volume will always be equal to the centre of gravity.

Example 8.2 (Solid of Revolution). Find the centre of gravity of a cone of uniform density ρ with

radius r, height h.

15



MECH1010 8 First Moments & Centres of Gravity

h

r

δx

y

By symmetry the centre of gravity will be on the x-axis, thus ȳ = z̄ = 0. A suitable volume element

is δV ≈ πy2δx, where y = rx/h. Thus the first moment of volume about the x-axis is δMx
V ≈ xδV ≈

πxy2δx. Therefore

Mx
V = π

∫ h

0

xy2 dx

= π

∫ h

0

x (rx/h)2 dx

=
πr2

h2

[

x4

4

]h

0

=
πr2h2

4
.

The volume is given by

V = π

∫ h

0

(rx/h)2 dx

=
πr2h

3
.

Thus x̄ =
3h

4
.

8.2 Centroid of a Surface

Similarly, the centroid of a surface A is equal to the first moment of the area divided by the
area, i.e.

x̄ =
1

A

∫

xdA.

Example 8.3. Find the centroid of the triangular laminar bounded by the x-axis and the lines

y = 3x/5 and x = 5.

16



MECH1010 9 Second Moments

1

2

3

1 2 3 4 5

y = 3x/5

δx δy

x̄

ȳ

We note that the area of this triangle is A = 15/2 and that x̄ is the perpendicular distance from the

centroid and the yz-plane. A suitable area element is δA ≈ yδx. Then the first moment of area about

the yz-plane is δMx
A ≈ xδA ≈ xyδx. Hence

Mx
A =

∫ 5

0

xy dx

=
3

5

∫ 5

0

x2 dx

=
3

5

[

x3

3

]5

0

= 25.

Therefore x̄ = 10/3. Now to find ȳ we note that the area element is δA = (5 − x) δy = 5 (1 − y/3) δy,
so the mass element is 5ρ (1 − y/3) δy. So in the limit as δx → 0

My
A = 5

∫ 3

0

(1 − y/3) y dy

= 5

∫ 3

0

(

y − y2/3
)

dy

= 5

[

y2

2
− y3

9

]3

0

= 15/2.

So ȳ = 1.

9 Second Moments

The kinetic energy of a system of global mass m, whose points move with a velocity v is given
by

h =
1

2

n
∑

i=1

miv
2 =

1

2
mv2.

In the case of a rotating rigid system this formulation has to be re-adapted: the velocity of each
point of the system is a function of the angular velocity ω (given in radians per second) and the
distance r from the axis of rotation, thus v = ωr. Hence the kinetic energy is given by

h =
1

2
ω2

n
∑

i=1

mir
2
i .

17



MECH1010 9 Second Moments

Let I =
∑n

i=1
mir

2
i be the second moment of mass, thus

h =
1

2
ω2I.

Thus the form of the kinetic energy is similar to that for linear velocity, where angular velocity
corresponds to linear velocity, i.e. v ↔ ω, and the second moment of mass I is equivalent to the
inertial mass m in the case of rotating systems, i.e. I ↔ m. It gives a measure of a system’s resistance
to rotational accelerations about a given axis, i.e. it’s moment of inertia.

For a continuous body C of total mass m, to find the moment of inertia we define a small element
of mass δm at a distance r from the axis of rotation, thus δI ≈ r2δm. Then in the limit as δm → 0

I =

∫

C
r2 dm.

Since the second moment of mass is taken about an axis, the choice of elemental mass is influenced
by the axis.

9.1 Second Moment of a Volume

If the body has ρ = const. and volume V , then m = ρV and dm = ρ dV . Thus I = ρ
∫

r2 dV .
The second moment of volume is given by

IV =

∫

r2 dV.

Example 9.1 (Triangles). Find the moment of inertia of the triangular lamina, with uniform surface

density ρ, about the y-axis.

1

2

3

1 2 3 4 5

r = x

δx

Choose a mass element that is equidistant from the y-axis: a vertical element of width δx and

height y is ideal. Thus δm ≈ ρyδx. The distance of this element to the y-axis is simply x. Thus

δIy ≈ x2δm ≈ ρx2yδx

Iy =
3ρ

5

∫ 5

0

x3 dx

=
3ρ

5

[

x4

4

]5

0

=
375ρ

4
.

First moments are taken about a plane, second moments are taken about an axis: this dictates
the selection of an appropriate area.
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MECH1010 9 Second Moments

Example 9.2 (Wheels). Find the moment of inertia of the circular lamina of radius a and surface

density ρ about its axis.

a

r

δr

Again, we choose an element which is equidistant from the axis at all points, so we choose an annulus

of width δr. the area of an annulus is given by δA = π
(

r2 − (r − δr)2
)

≈ 2πrδr. Hence

δI0 = r2δA

= 2πρr3δr.

Therefore

I0 = 2πρ

∫ a

0

r3 dr

= 2πρ

[

r4

4

]a

0

=
πρa4

2
.

Example 9.3 (Moment of Inertia of a Solid of Revolution). Firstly find the moment of inertia about

Ox by choosing a mass element δm equidistant from Ox. Thus let the mass element be a cylindrical

shell with axis along Ox, radius y and radial thickness δy.

h

r

y

h − x

δy

19
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Thus

δm ≈ 2πρy (h − x) δy.

Thus the moment of inertial about Ox is

δIx ≈ y2δm

≈ 2πρy3 (h − x) δy

= 2πρy3

(

h − hy

r

)

δy.

Thus

Ix = 2πρh

∫ r

0

y3 − y4

r
dy

= 2πρh

[

y4

4
− y5

5r

]r

0

=
πρhr4

10
.

9.2 Second Moment of an Area

A related concept, which is applied to surfaces and sections, is the second moment of area.
The second moment of area is defined as

IA =

∫

r2 dA.

The second moment of area of a section about an axis is an important concept in the study of
elasticity as it gives a measure of the resistance of a section to bending along the axis. All results
obtained for the second moment of mass for thin plates can be directly extended to this case by
replacing the elemental mass with the elemental area.

Example 9.4. Consider a rectangular plate.

δy

a

b

δAx

δx

a

b

δAy

Then about the Ox plane the element area is given by δAx ≈ aδy. Thus δIAx = y2δAx ≈ ay2δy.
Thus summing all incremental elements up in the limit as δy → 0 gives

IAx = a

∫ b

0

y2 dy

=
ab3

3
.
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MECH1010 9 Second Moments

Similarly about the Oy plane the element area is given by δAy ≈ bδx. Thus δIAy = x2δAy ≈ bx2δx.

Thus

IAy = b

∫ a

0

x2 dx

=
a3b

3
.

9.3 Radius of Gyration

We have seen that it is possible to model the first moment due to a distributed mass as a point
load acting through the centre of gravity of a body. Similarly it is possible to model a body rotating
about an axis as a cylindrical shell of mass m equal to the total mass of the system, rotating about
the same axis with the same angular speed. The radius of this cylindrical shell is known as the
radius of gyration, denoted by k or Rg, and is obtained by equating the kinetic energy of the
original body with the kinetic energy of the cylindrical shell. Thus the radius of gyration of a mass
is given by

mk2 = I ⇒ k =

√

I

m
.

An equivalent definition is the radius of gyration k of an area about an axis, i.e. about the x-axis as

Ak2
x = Ix ⇒ kx =

√

Ix

A
.

Often there is no element equidistant to the axis about which we wish to find a second moment. In
such cases we can apply the parallel axis theorem.

9.4 Parallel & Perpendicular Axis Theorems

If IAA is the moment of inertia of a body of mass m about an axis AA through the centre of
gravity of a body and IBB the moment of inertia of the body through a parallel axis BB, then

IBB = IAA + mL2

where L is the distance between AA and BB. The same result holds for second moments of area as

IBB = IAA + AL2

where L is, again, the distance between AA and BB.
The same result holds for other second moments, for example for the radius of gyration

k2
AA = k2

BB + L2.

For perpendicular axes

IOz
= IOx

+ IOy
and k2

Oz
= k2

Ox
+ k2

Oy

however in this case the result only holds for areas.

Example 9.5 (Rectangular Plares Revisited). We have seen that about Ox

IAx = a

∫ b

0

y2 dy

=
ab3

3
.
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MECH1010 10 Techniques of Integration

So along the centre of gravity

IGx = IAx − AL2

=
ab3

3
− ab

(

b

2

)2

=
ab3

12
.

Thus it is much easier for a section to bend along the centre of gravity.

10 Techniques of Integration

10.1 Completing the Square

By completing the square, we can turn integrals into standard forms. For a given quadratic

equation ax2 + bx + c we may divide through by a to get x2 +
b

a
x +

c

a
.

As (x + d)2 = x2 + 2dx + d2 then we express the quadratic as

x2 +
b

a
x +

c

a
=

(

x2 +
b

a
x +

b2

4a2

)

+
c

a
− b2

4a2

=

(

x +
b

2a

)2

+
4ac − b2

4a2
.

If we let z = x +
b

2a
and α =

√

4ac − b2

4a2
then we can express the quadratic in the form z2 ± α2.

Example 10.1. Find the indefinite integral
∫

1

−2x2 − 20x + 60
dx.

At first glance the integral does not appear to be in any of our standard forms. However, by means

of simple algebra the denominator may be rearranged to
∫

1

−2x2 − 20x + 60
dx =

1

2

∫

1

30 − (x2 + 10x)
dx

=
1

2

∫

1

30 + 25 − (x2 + 10x + 25)
dx

=
1

2

∫

1

55 − (x + 5)2
dx.

Thus the integral is now in the form
∫

1

a2 − x2
dx

where a =
√

55 . Thus
∫

1

−2x2 − 20x + 60
dx =

1

2

∫

1

55 − (x + 5)2
dx

=
1

4
√

55
ln

∣

∣

∣

∣

∣

√
55 + 5 + x√
55 − 5 − x

∣

∣

∣

∣

∣

+ c.

22
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10.2 Rational Functions & Partial Fractions

In many applications we need to integrate rational functions, that is functions of the form

f (x) =
h (x)

g (x)

where h (x) and g (x) are polynomials. Rational functions can be expressed as a series of partial
fractions which can then be evaluated by our standard forms

Example 10.2. Evaluate

∫

f (x) dx =

∫

x + 7

x2 − 7x + 10
dx.

Although the integral does not look like one of our standard forms, it can be expressed as a partial

fraction. First we note that

x2 − 7x + 10 = (x − 5) (x − 2) .

Then, as the numerator is a polynomial of degree one and the denominator a polynomial of degree

two, assume that the function can be expressed in the form

f (x) =
a

x − 5
+

b

x − 2

=
a (x − 2)

(x − 5) (x − 2)
+

b (x − 5)

(x − 5) (x − 2)

=
a (x − 2) + b (x − 5)

(x − 5) (x − 2)

=
x (a + b) − (5a + 2b)

(x − 5) (x − 2)
.

Thus, on equating powers of x we have a pair of linear simultaneous equations, i.e.

1 = a + b and 7 = −2a − 5b.

Let a = 1 − b, then 7 = −2 (1 − b) − 5b = −9 = 3b, thus b = −3 and so a = 4. Therefore

f (x) =
4

x − 5
− 3

x − 2
.

So that the integral is

∫

f (x) dx = 4

∫

1

x − 5
dx − 3

∫

1

x − 2
dx

= 4 ln |x − 5| − 3 ln |x − 2| + c

= ln

∣

∣

∣

∣

∣

(x − 5)4

(x − 2)3

∣

∣

∣

∣

∣

+ c.

10.3 Change of Variables

An important technique is to change the variables over which we are integrating. The key to the
technique is the correct choice of substitution. Experience and practice play a large part in the ease
at which the process applied.
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Example 10.3. Consider the integral

∫

dx

x (1 + x2)
.

The substitution u = x2 implies
du

dx
= 2x hence du = 2xdx, i.e. dx =

du

2
√

u
. Thus

∫

dx

x (1 + x2)
=

1

2

∫

du

u (1 + u)
.

The integral can now be solved using partial fractions

1

2

∫

du

u (1 + u)
=

1

2

∫

du

u
− 1

2

∫

du

1 + u

=
1

2
(lnu − ln (1 + u)) + c

=
1

2
ln

u

1 + u
+ c

= ln

√

u

1 + u
+ c.

Back-substituting u = x2 gives the solution

∫

dx

x (1 + x2)
= ln

|x|√
1 + x2

.

There are many different choices of substitution, for example

Example 10.4. Consider the integral

∫

dx

x (1 + x2)
.

The substitution u = 1 + x2 implies
du

dx
= 2x hence du = 2xdx, i.e. dx =

du

2
√

u − 1
. Thus

∫

dx

x (1 + x2)
=

1

2

∫

du

u (u − 1)

=
1

2

∫

du

u − 1
− 1

2

∫

du

u

= ln

√

u − 1

u
+ c.

Back-substituting u = 1 + x2 gives the correct solution.

The two examples highlight the value of experience in selecting a substitution. The following is
a selection of important cases with their suggested substitutions

Example 10.5. Find the indefinite integral

∫

x
√

3x − 1 dx.
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Expression in integral Suggested substitution
√

ax + b ax + b = u2

x
√

ax + b x = 1/u√
a2 − x2 x = a sin θ or x = a tanhu√
x2 − a2 x = a sec2 θ or x = a cosh u√
x2 + a2 x = a tan θ or x = a sinhu

x2 + a2 x = a tan θ

Let u =
√

3x − 1 , that is x =
(

u2 + 1
)

/3, so that
dx

du
=

2u

3
. Thus the integral becomes

∫

x
√

3x − 1 dx =

∫

u
u2 + 1

3

2u

3
du

=
2

9

∫

u4 + u2 du

=
2

9

(

u5

5
+

u3

3

)

+ c

=
2u3

135

(

3u2 + 5
)

+ c.

Back-substitution yields the solution in terms of x
∫

x
√

3x − 1 dx =
2

135
(3x − 1)3/2 (9x + 2) + c.

Example 10.6. Find the indefinite integral
∫

√

a2 − x2 dx.

Let x = a sin θ then dx = a cos θ dθ and hence
∫

√

a2 − x2 dx =

∫

√

a2 − a2 sin2 θ a cos θ dθ

= a

∫

√

a2
(

1 − sin2 θ
)

cos θ dθ

= a2

∫

cos2 θ dθ

=
a2

2

∫

(1 + cos 2θ) dθ

=
a2

2

(

θ +
1

2
sin 2θ

)

+ c.

Back substitution requires the use of the trigonometric identities

sin θ =
x

a
⇒ cos θ =

√
a2 − x2

a
hence

1

2
sin 2θ = sin θ cos θ =

x
√

a2 − x2

a2
.

Hence
∫

√

a2 − x2 dx =
a2

2
sin−1 x

a
+

x

2

√

a2 − x2 + c.
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The example demonstrates the importance of the trigonometric identities in integration (and
calculus in general). You will frequently be required to manipulate trigonometric expressions into a
form which can easily be integral and as such it is essential that the following identities are known:

sin2 θ + cos2 θ = 1,

sin (α ± β) = sin α cos β ± cos α sinβ,

cos (α ± β) = cos α cos β ∓ sinα sinβ.

Hence we have the double angle formulae

sin 2θ = 2 sin θ cos θ,

cos 2θ = cos2 θ − sin2 θ,

tan 2θ =
2 tan θ

1 − tan2 θ

and the following useful identities

cos2 θ =
1

2
(1 + cos θ) and sin2 θ =

1

2
(1 − cos θ) .

Definite integrals can be solved using by substitution but care is need to ensure the limits of
integration correspond to the correct limits in the new variable, as the following example shows

Example 10.7. Evaluate the definite integral

∫ 3

1/2

x
√

2x + 3 dx.

Let u = 2x + 3 then when x = 1/2 then u = 4 and when x = 3 then u = 9. Also du = 2dx, hence

∫ 3

1/2

x
√

2x + 3 dx =
1

4

∫ 9

4

(u − 3)
√

u du

=
1

4

∫ 9

4

(

u3/2 − 3u1/2
)

du

=
1

4

[

2u5/2

5
− 2u3/2

]9

4

=
116

10
.

The substitution u = tanx is useful in evaluating quotients involving the square of trigonometric
functions

∫

dx

a + b cos2 x + c sin2 x
.
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We need to find expressions for
dx

du
, cos2 x and sin2 x

du

dx
= sec2 x = 1 + tan2 x = 1 + u2 ⇒ dx

du
=

1

1 + u2
.

Thus, from sec2 x = 1 + u2 so cos2 x =
1

1 + u2
and sin2 x =

u2

1 + u2
. Hence

∫

dx

a + b cos2 x + c sin2 x
=

∫

du

u2 (a + b) + (a + c)

which can be expressed in standard form and then solved.

1

u√ 1 +
u
2

x

Example 10.8. Find the definite integral

∫

dx

7 + cos2 x
.

From the substitution u = tanx then the integral is

∫

dx

7 + cos2 x
=

∫

du

8u2 + 7

=
1

8

∫

du

u2 +
(

√

7/8
)2

which integrates to give

∫

dx

7 + cos2 x
=

1√
56

tan−1
√

7/8 u + c.

Finally since u = tanx, then back-substituting gives

∫

dx

7 + cos2 x
=

1√
56

tan−1
(

√

8/7 tan x
)

+ c.

The second substitution we will consider is the u = tanx/2. Typically this substitution is used
for integrals of the form

∫

dx

a + b cos x + c sinx
.

Thus
du

dx
=

1

2
sec2 x

2
=

1

2

(

1 + tan2 x

2

)

=
1 + u2

2
⇒ dx

du
=

2

1 + u2
.
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From sec2
x

2
=

1 + u2

2
so cos

x

2
=

1√
1 + u2

and sin
x

2
=

u√
1 + u2

. Hence, by the trigonometric

identities

sinx = 2 sin
x

2
cos

x

2
=

2u

1 + u2
and cos x = cos2

x

2
− sin2 x

2
=

1 − u2

1 + u2
.

Therefore
∫

dx

a + b cos x + c sinx
= 2

∫

du

(a − b) u2 + 2cu + (a + b)
.

Example 10.9. Find the indefinite integral

∫

dx

1 + sinx
.

From the substitution u = tan
x

2
then sinx =

2u

1 + u2
and

dx

du
=

2

1 + u2
so that

∫

dx

1 + sinx
=

∫

2/
(

1 + u2
)

1 + 2u/ (1 + u2)
du

=

∫

2du

1 + 2u + u2

=

∫

2du

(1 + u)2

= − 2

1 + u
+ c

= − 2

1 + tanx/2
+ c.

10.4 Integrals Containing Derivatives of Functions

Although not listed in the table of standard integrals, integrals of the form

∫

f ′ (x) f (x) dx and

∫

f ′ (x)

f (x)
dx

can easily be solved by inspection as

∫

f ′ (x) f (x) dx =
1

2
f2 (x) + c and

∫

f ′ (x)

f (x)
dx = ln |f (x)| + c.

To derive the results, let f (x) = z, then f ′ (x) dx = dz and the equations are in standard form.

10.5 Integration by Parts

It is not always possible to express a product in the form f ′ (x) f (x), so an alternative method
of integration is required. If u = u (x) and v = v (x), then the differential of the product of the two
functions is given by the product rule as

d

dx
(uv) = u

dv

dx
+ v

du

dx
.
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Integrating both sides of this expression yields

uv =

∫
(

u
dv

dx
+ v

du

dx

)

dx.

We can rearrange as

∫

u
dv

dx
dx = uv −

∫

v
du

dx
dx.

At first glance it may appear that no progress has been made - we simply have replaced one integral
with another. However the correct choice of u and v the integral should be more easily solved than
the original integral.

Some problems require successive applications of integration by parts, or the use of another
formula, for example

Example 10.10. Find

∫

ex sinxdx.

By parts, let

u = ex ⇒ du

dx
= ex

dv

dx
= sinx ⇒ v = − cos x.

Thus
∫

ex sin xdx = −ex cos x +

∫

ex cos xdx.

If we now apply integration by parts to

∫

ex cos xdx

with

u = ex ⇒ du

dx
= ex

dv

dx
= cos x ⇒ v = sin x.

Then
∫

ex cos xdx = ex sinx +

∫

ex sinxdx.

On combining and simplifying the two expressions we find

∫

ex sinxdx =
1

2
ex (sinx − cos x) + c.

A useful particular case of integration by parts occurs when we part v = x into the integration
by parts formula. We are multiplying the integrand by 1 and applying integration by parts to the
product. An important application of this technique is applied to the natural logarithm lnx.
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Example 10.11. Find

∫

lnxdx.

Let

u = lnx ⇒ du

dx
=

1

x
dv

dx
= 1 ⇒ v = x

hence
∫

lnxdx = x lnx −
∫

1dx

= x (lnx − 1) + c.

Example 10.12. Find

∫

√

a2 − x2 dx.

Let

u =
√

a2 − x2 ⇒ du

dx
=

−x√
a2 − x2

dv

dx
= 1 ⇒ v = x

hence

∫

√

a2 − x2 dx = x
√

a2 − x2 +

∫

x2

√
a2 − x2

dx.

Now note that

∫

√

a2 − x2 dx =

∫

a2 − x2

√
a2 − x2

dx

=

∫

a2

√
a2 − x2

dx −
∫

x2

√
a2 − x2

dx

= a2 sin−1 x

a
−

∫

x2

√
a2 − x2

dx.

Thus combining the two expression and simplifying yields

∫

√

a2 − x2 dx =
a2

2
sin−1 x

a
+

x

2

√

a2 − x2 + c.

When using integration by parts to evaluate a definite integral the formula is now given by

∫ b

a
u

dv

dx
dx = [uv]ba −

∫ b

a
v
du

dx
dx

It may be the case that the integral on the right hand side can be evaluate by a change of variable,
in which case the limits of integration would need to be changed and would be different from those
used to evaluate the uv term.
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Example 10.13. Evaluate the definite integral

∫ 1/2

0

cos−1 xdx.

This is a special case of integration by parts

u = cos−1 x ⇒ du

dx
= − 1√

1 − x2

dv

dx
= 1 ⇒ v = x.

Integration by parts gives

∫ 1/2

0

cos−1 xdx =
[

x cos−1 x
]1/2

0
+

∫ 1/2

0

x√
1 − x2

dx

we can evaluate the integral on the right hand side via the substitution u = 1−x2 so that
du

dx
= −2x

hence xdx = −du

2
. The limits of integration change as when x = 0 then u = 1 and when x = 1/2

then u = 3/4. Thus the integral is now

∫ 1/2

0

cos−1 xdx =
[

x cos−1 x
]1/2

0
− 1

2

∫ 3/4

1

1√
u

du

=
π

6
−

[√
u

]3/4

1

=
π

6
+ 1 −

√

3

4
.

11 Reduction Formulae

Previously we have looked at the technique of integration by parts as a means of integrating
products. The technique is reliant on reducing the original integral to the difference of a product
and another integral of simpler form. Often the reduced integral is of the same form as the original
integral.

Example 11.1. Find
∫

x3ex dx.

Let u = x3 then
du

dx
= 3x2 and v = ex then

dv

dx
= ex. Thus

∫

x3ex dx = x3ex − 3

∫

x2ex dx.

The second integral is in a similar form to the original integral, i.e. a polynomial term, x3 or x2,

multiplied by the exponential function ex. Indeed, we may write
∫

xnex dx = xnex − n

∫

xn−1ex dx

and we may denote In =
∫

xnex dx so that In = xn − nIn−1 where In = xn−1ex − (n − 1) In−1 and

so on.
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MECH1010 11 Reduction Formulae

Reduction formulae can be written for many common integrals and can simplify the process of
integration.

Example 11.2. Express, in reduced form, the integral

∫

cosn θ dθ.

Firstly let cosn θ = cos θ cosn−1 θ, then using integration by parts with

u = cosn−1 θ ⇒ du

dθ
= − (n − 1) cosn−2 θ sin θ

dv

dθ
= cos θ ⇒ v = sin θ.

Then
∫

cosn θ dθ = cosn−1 θ sin θ + (n − 1)

∫

cosn−2 θ sin2 θ dθ

= cosn−1 θ sin θ + (n − 1)

∫

cosn−2 θ
(

1 − cos2 θ
)

dθ

= cosn−1 θ sin θ + (n − 1)

∫

cosn−2 θ dθ −
∫

cosn θ dθ.

Denoting In =
∫

cosn θ dθ then, from the above equation

In = cosn−1 θ sin θ + (n − 1) (In−2 − In) .

Hence

In =
1

n

(

cosn−1 θ sin θ + (n − 1) In−2

)

.

The following example shows the value of reduction formulae. Note that in the case of definite
integrals reduction formulae can be used to find exact solutions.

Example 11.3. Find the indefinite integral

∫

cos4 θ dθ.

From the previous example we know

I4 =
1

4
cos3 θ sin θ +

3

4
I2

I2 =
1

2
cos θ sin θ +

1

2
I0

I0 =

∫

cos0 θ dθ =

∫

dθ = θ.

Thus

∫

cos4 θ dθ =
1

4
cos3 θ sin θ +

3

4

(

1

2
cos θ sin θ +

1

2
θ

)

+ c

=
1

4
cos3 θ sin θ +

3

8
cos θ sin θ +

3

8
θ + c.
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Example 11.4. Evaluate the definite integral

∫ π/2

0

cos6 θ dθ.

Now in the derivation of the reduction formula we must evaluate the terms in the integral, thus we

now have

In =
1

n

[

cosn−1 θ sin θ
]π/2

0
+

(n − 1)

n
In−2.

We can see that for n > 1 the first part of the formula is zero when evaluated over the given range.

Thus, in this case In =
n − 1

n
In−2 for n > 1. If n is odd we will eventually be left with the case of

n = 1, in which case

I1 =

∫ π/2

0

cos θ dθ = 1.

If n is even we will be left with the limiting case n = 0, in which case

I0 =

∫ π/2

0

dθ =
π

2
.

Therefore the integral can be evaluated as

I6 =
5

6
I4 =

5

6

3

4
I2 =

5

6

3

4

1

2
I0 =

5

6

3

4

1

2

π

2
=

5π
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12 Infinite Integrals

Thus far we have assumed that all our functions are evaluated over a finite, bounded domain.
However situations may arise where the limits of integration become infinite. Consider

∫

∞

a
f (x) dx

then

∫

∞

a
f (x) dx = lim

b→∞

∫ b

a
f (x) dx = lim

b→∞

[F (b)] − F (a) .

A similar approach holds for integrals of the form

∫ b

−∞

f (x) dx = lim
a→−∞

∫ b

a
f (x) dx = F (b) − lim

a→−∞

[F (a)] .

Note that often it is not always possible to evaluate a function when its argument tends to infinity.

Example 12.1. Evaluate the integral

∫

∞

0

1

(1 + x2)2
dx.

By substitution

x = tanu then
dx

du
= sec2 u ⇒ dx = sec2 u du
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and the limits change as when

x → ∞ ⇒ u =
π

2
x = 0 ⇒ u = 0.

Hence
∫

∞

0

1

(1 + x2)2
dx =

∫ π/2

0

sec2 u du

(1 + tan2 u)
2

=

∫ π/2

0

du

sec2 u

=

∫ π/2

0

cos2 u du

=
1

2

∫ π/2

0

(1 + cos 2u) dx

=
1

2

[

u +
1

2
sin 2u

]π/2

0

=
π

4
.

It may also be the case that the function itself tends to infinity at one of the limits of integration,
say b. In this case we remove the infinite value from the summation by perturbing the limit b by a
small parameter ǫ

∫ b−ǫ

a
f (x) dx for ǫ > 0.

Then we consider the limiting case as ǫ → 0
∫ b−ǫ

a
f (x) dx = lim

ǫ→0

∫ b−ǫ

a
f (x) dx = lim

ǫ→0
[F (b − ǫ)] − F (a) .

Example 12.2. Evaluate the definite integral
∫ 1

0

lnxdx

where ln 0 is infinite. Thus we let
∫ 1

0+ǫ
lnxdx = [x lnx − x]1ǫ

= ln 1 − ǫ ln ǫ + ǫ − 1

= −ǫ ln ǫ + ǫ − 1

As limǫ→0 [ǫ ln ǫ] = 0 then
∫ 1

0
lnxdx = −1.

13 Numerical Integration

In many real world applications no exact analytical solution to a definite integral is possible, thus
an approximate solution to such problems must be found via numerical methods. Most numerical
methods are based upon the division of the domain into a finite number of very small elements whose
areas can be summed to give an approximate solution. The two most commonly applied methods
are known as the trapezium and Simpson’s Rule.
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MECH1010 13 Numerical Integration

13.1 Trapezium Rule

Consider the area underneath the curve f (x) between the limits x = a and x = b.

xi xi+1

yi
yi+1

a b

Calculating the area of the ith-strip dAi, with d = xi+1 − xi, then

dAi ≈ dyi+1 +
d

2
(yi − yi+1)

=
d

2
(yi + yi+1) .

Summing all the individual areas gives

A ≈
n

∑

i=1

dAi

=
d

2
(y1 + y2) +

d

2
(y1 + y2) + . . . +

d

2
(yn−1 + yn)

=
d

2
(y1 + 2y2 + 2y3 + . . . + 2yn−1 + yn) .

Note that the ordinates must be evenly spaced, but that any number of elements can be used.

13.2 Simpson’s Rule

The trapezium method using linear approximations, Simpson’s method of numerical integration
approximates the area under a curve by a series of quadratic functions passing through three points
of the curve.

d

x1 x2 x2

y1

y2

y3

δA

Consider the area represented by two strips of equal width d, with values x1, x2 and x3 where
x1 = x2 − d and x3 = x2 + d. The function given by y1 = f(x1) = f(x1 − d) etc. Approximating the
integrand as a quadratic function, the area can be approximated as

∫ x3

x1

f (x) dx ≈
∫ x2+d

x2−d

(

ax2 + bx + c
)

dx.
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MECH1010 13 Numerical Integration

On integrating and substituting in the values of y1, y2 and y3, the area can be shown to be given by

dA2 ≈ d

3
(y1 + 4y2 + y3) .

Summing all strips

A ≈
n

∑

i=1

dA2i

=
d

3
(y1 + 4y2 + y3) +

d

3
(y3 + 4y4 + y5) + . . . +

d

3
(yn−2 + 4yn−1 + yn)

=
d

3
(y1 + 4y2 + 2y3 + 4y4 . . . + 2yn−2 + 4yn−1 + yn) .

Note that an even number of strips is required, i.e. n − 1, as an odd number of ordinates, n, is
required.

Example 13.1. Use Simpson’s rule to with five ordinates to find an approximation to

A =

∫ π

0

√
sin θ dθ.

Thus, when n = 5 then d = π/4, so x1 = 0, x2 = π/4, x3 = π/2, x4 = 3π/4 and x5 = π. Then by

Simpson’s rule

A ≈ 1

3
· π

4

(

√

sin x1 + 4
√

sinx2 + 2
√

sinx3 + 4
√

sinx4 +
√

sinx5

)

=
1

3
· π

4

(

0 + 4 · 2−1/4 + 2 · 1 + 4 · 2−1/4 + 0
)

= 2.2848 to four decimal places.
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