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1 Introduction

The aim of this part of the course is to cover the basics of vectors in two- and three-
dimensions. It will also provide a brief introduction to matrices. You will continue to study
vectors and matrices next year in 2010: Modelling and Analysis II. You should all have covered
vectors in two dimensions before, and have seen them in complex numbers to some extent. The
course will start from scratch, but will cover the basics very quickly. The aim of these notes is
to refresh your memories of some of the fundamentals and to formally layout some of the basic
definitions.

Recommended Reading

- K. A. Stroud, Engineering Mathematics London: Palgrave Macmillan, 6th Revised edition.

∗

This document can be downloaded from: http://www.ucl.ac.uk/~ucesdsi/teaching.html
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MECH1010 2 Vectors

2 Vectors

A vector is a quantity with both direction and magnitude. An example of a vector is
displacement, which is a distance from a point to another point. Another example is velocity,
which is a vector and whereas speed is the associated scalar quantity.

Symbol Notation

a, ~a, a,
−→
OA Vector

|a|, ‖a‖ Magnitude or Norm of a vector

â Unit vector

(i, j, k), (ex, ey, ez) Orthonormal basis vectors

A vector can be defined by an initial point O and an end point A as
−→
OA. The notion

of direction implies a spatial frame of reference, i.e. a displacement from a start point or a
velocity in a direction. Thus, vectors can have dimension determined by the frame in which
we are working. For example the points A and B may lie in a (x, y)-plane as A = (x1, y1)

and B = (x2, y2) so that
−−→
AB = (x2 − x1, y2 − y1). Alternatively a vector may exist in three-

dimensions or arbitrarily many dimensions. A vector is written as a row or a column of numbers,
whose ith-entries are denoted with the ith-subscript.

x = (x1, x2, . . . , xn) or x = (x1, x2, . . . , xn)T =











x1

x2

...
xn











.

In general a position vector is written horizontally and a direction vector vertically. A
position vector is fixed with respect to the origin, whereas a direction vector is not fixed.

The magnitude of a vector x is given by the scalar quantity c as

|x| =
√

x2
1
+ x2

2
+ . . . + x2

n =

√

√

√

√

n
∑

i=1

x2
i = c (1)

The magnitude of a vector can be visualised as its length. The magnitude of the vector
−−→
AB is

equal to the magnitude of the vector
−−→
BA as the distances are the same, i.e. |−−→AB| = |−−→BA|. The

directions are different as the initial frames of reference are different: one starts from A and
ends at B, the other in the opposite direction.

A vector whose magnitude is equal to one is said to be a unit vector and is commonly
denoted by v̂. Thus any vector can be normalized, that is turned into a unit vector, by

v̂ =
v

|v| . (2)
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MECH1010 2 Vectors

2.1 Addition and Subtraction of Vectors

Vectors of the same dimension can be added and subtracted. For these operations we use
the parallelogram law. We may add vectors of the same dimension in the usual way a + b = c,
where the new vector c is defined by its individual elements as

ci = ai + bi for i = 1, 2, . . . n. (3)

This is the same as
−−→
AB +

−−→
BC being equal to

−→
AC. Thus, if we add v1 =

−−→
AB to v2 =

−−→
BA, then

v1 + v2 = 0 (the zero vector is the vector whose entries are all zero) as v1 = −v2.

x

y

a

b
c

ay

by

ax bx

Vectors have the following general properties:

1. Addition of vectors is commutative, that is a + b = b + a

2. Addition is also associative, i.e. (a + b) + c = a + (b + c)

3. Vectors can be multiplied by scalars. This can change both magnitude and direction.

(i) The sign of the scalar can change the direction of a vector : if the scalar is negative
the direction is reversed.

(ii) The size of the scalar can change the magnitude of a vector : if the scalar is greater
than one the magnitude is increased.

a 2a 3a

−a

3



MECH1010 2 Vectors

To show that addition of vectors is associative consider the system OPQR

O P

Q

R

O P

Q

R

O P

Q

R

There are multiple paths from O to R

(−−→
OP +

−−→
PQ

)

+
−−→
QR =

−−→
OQ +

−−→
QR

=
−−→
OR

and
−−→
OP +

(−−→
PQ +

−−→
QR

)

=
−−→
OP +

−→
PR

=
−−→
OR

2.2 Components of a Vector Or How to Establish a Co-ordinate System

In three-dimensional Cartesian co-ordinates the unit vectors that define the co-ordinate
system are denoted by i, j and k or by ex, ey and ez. Often vectors expressed in this system
are denoted by a = (ax, ay, az) = axex + ayey + azez = a1i + a2j + a3k. The components of
a vector are determined by the frame chosen.

Two Dimensions

Given three vectors a =
−→
OA, b =

−−→
OB and p =

−−→
OP , where p lies in the plane of a and b

and hence may be expressed as
−−→
OP =

−−→
OA′ +

−−→
OB′ for points A′ and B′ which lie on a and b.

Let â and b̂ be the unit vectors of a and b. Let p1 = |
−−→
OA′| and p2 = |

−−→
OB′|, hence by rescaling

the unit vectors we may express the vector p as

−−→
OP =

−−→
OA′ +

−−→
OB′

= p1â + p2b̂.

Then P = (p1, p2) are called the co-ordinates of P with respect to the axes
−→
OA and

−−→
OB, where−−→

OP is written as the sum of its components along the axes
−→
OA and

−−→
OB.

O

A

B

P

B′

A′

4
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Three-Dimensions

Consider three points A, B and C with vectors a =
−→
OA, b =

−−→
OB and c =

−−→
OC which are

non-coplanar.

O

C ′

B′

A′

M

P

Consider a point P . Then let
−−→
PM be the line through P which is parallel to c. This line

intersects the plane formed by a and b at the point M . Let the line which is parallel to
−−→
OM

and passes through P intersect the vector c at point C ′. Hence

−−→
OP =

−−→
OM +

−−→
OC ′

=
−−→
OA′ +

−−→
OB′ +

−−→
OC ′

= p1â + p2b̂ + p3ĉ.

Thus, (p1, p2, p3) are the co-ordinates of P with respect to the
−→
OA,

−−→
OB and

−−→
OC frame, i.e.

p = p1â + p2b̂ + p3ĉ.

If the vectors a, b and c are mutually perpendicular then the frame will be an orthogonal
coordinate system. There are two possible configurations for an orthogonal co-ordinate system:
right-handed and left-handed. Axes must be taken in cyclic order, using thumb, first and second
finger as an aid. The right-handed is the most common (in fact left-hand systems will not be
used in this course). For a right-handed system the direction of positive rotation is given by
the right-hand screw rule.

Now let the vectors â, b̂ and ĉ be the x-, y- and z- axis in three-dimensional space. Thus
the position of a point P with respect to the origin can be represented by the position vector
(px, py, pz) in Cartesian co-ordinates.

5
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x

z

y
Left handed

y

z

x

Right handed

2.3 Applications of Vectors to Elementary Geometry

Point

The point P has position vector
−−→
OP = a relative to the origin in this example, where |a|

is the distance between P and the origin O and the direction is taken from the origin O to P
with respect to the local coordinate system.

x

y
z

a

P

Line

Suppose a line goes through the point P with position vector a and the line is parallel to

the direction vector b. A general point Q on the line is given by
−−→
OQ = r which can be expressed

as
r = a + λb. (4)

In Cartesian coordinates, i.e. the (x, y, z)-frame, let

r =





x
y
z



 , a =





α
β
γ



 and b =





l
m
n



 . (5)

Hence by equating components of the vector equation,

x = α + λl y = β + λm and z = γ + λn.

Thus the standard form of the algebraic equation for a line is

x − α

l
=

y − β

m
=

z − γ

n
= λ (6)

for a point on the line (α, β, γ) and a vector along the line (l, m, n)T .

6
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Now suppose a line passes through two points which have position vectors c and d. The
direction of the line connecting the two points may be written as d−c. The line passes through
the point c, so the equation of the line may be written as

r = c + λ (d − c) . (7)

b

r

Q

a

P

r

d

c

Example 2.1. Find the vector and Cartesian equation of the line which passes through the

point (1, 2, 3) and has direction (−1, 1, 4)T . Show that the point (−1, 4, 11) also lies on this line.

The equation for the line is given by

r =





1
2
3



 + λ





−1
1
4



 .

Thus x = 1 − λ, y = 2 + λ and z = 3 + 4λ. Hence

x − 1

−1
=

y − 2

1
=

z − 3

4
= λ.

The point (−1, 4, 11) lies on the line when λ = 2.

Plane

A plane may be characterised by three non-collinear points A, B and C, with position
vectors a, b and c respectively. The equation of the plane may then be formulated by a vector
which defines every point on the plane

r = a + λ (b − a) + µ (c − a) . (8)

Or in algebraic form
Π : ax + by + cz = d (9)

7
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c

d

a r

A

P

Example 2.2. Find the equation of the plane containing the points A, B and C which have

position vectors

a = (1, 2, 3) , b = (1,−1, 2) and c = (3, 2, 1) .

Thus

p =





1
2
3



 + λ





0
3
1



 + µ





−2
0
2



 .

Hence

x = 1 − 2µ (10a)

y = 2 + 3λ (10b)

z = 3 + λ + 2µ (10c)

Now we have three equations with two unknowns. If we solve the first equation (10a) for

µ = (1 − x)/2 and the second equation (10b) for λ = (y − 2)/3 and substitute then both into

the third equation (10c) we have 3x − y + 3z = 10.

Example 2.3. Find the point of intersection between the line given by r = (4, 4, 3)+λ (−1, 1, 4)
and the plane given by Π : 3x − y + 3z = 10.

The equation of line can be expressed as 4 − x = y − 4 = (z − 3) /4 = λ. Hence a point on the

line is given by x = −λ, y = λ + 4 and z = 4λ + 3. Substituting these values into the equation

8
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for the plane gives

10 = 3 (4 − λ) − (4 + λ) + 3 (4λ + 3)

= 12 − 3λ − 4 − λ + 9 + 12λ

= 17 + 8λ.

Hence λ = −7/8 and the point on the plane is given by (39/8, 25/8,−1/2).

Sphere

The equation of a sphere of radius R centred at point C is given by Râ = d − c.

c

d
Râ

C

P

O

2.4 The Dot Product

The dot product is a way of multiplying vectors with a scalar solution, for this reason it
is occasionally called the scalar product. The dot product is defined as

a · b =
n

∑

i=1

aibi = a1b1 + a2b2 + . . . + anbn = c. (11)

Hence, we may write the magnitude of a vector as

|v| =
√

v · v ⇒ |v|2 = v · v =
n

∑

i=1

v2

i . (12)

Thus we have that the dot product is commutative, that is a · b = b · a.
Now consider two vectors a and b extending from the origin, separated by an angle θ. A

third vector c may be defined as
c = a − b.

creating a triangle with sides a, b, and c.

By the cosine rule

c · c = |c|2 = |a|2 + |b|2 − 2|a||b| cos θ

= a · a + b · b − 2|a||b| cos θ.

9
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a

b

c
θ

But as c = a − b, we also have

c · c = (a − b) · (a − b)

= a · a + b · b − 2 a · b.

Hence comparing the two expressions

a · a + b · b − 2 a · b = a · a + b · b − 2|a||b| cos θ.

Thus, on re-arranging
a · b = |a||b| cos θ. (13)

So the dot product between two vectors can be used to find the angle between them as

θ = cos−1

(

a · b
|a||b|

)

. (14)

The angle measured by a · b is measured in the opposite direction to the angle measured by
b · a as one is measured from the reference vector defined by a the other b but the two dot
products are equal as cos (−θ) = cos (θ).

Thus for two non-zero vectors a and b if a · b = 0 then cos θ = 0, that is the angle between
them is ±π/2, i.e. the two vectors are at right angles. Such vectors are said to be orthogonal.
If both vectors are unit vectors, i.e. a = â and b = b̂, such vectors are said to orthonormal.

Note that the dot product provides the angle between two positive facing vectors.

Example 2.4. What is the angle, θ, between v = (1, 0) and w = (1, 1)? What is the angle, ϕ,

between w and −v?

w

v
θ

w

−v
ϕ

10
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As | ± v| = 1 and |w| =
√

2 and ±v ·w = ±1 then the angles are given by θ = cos−1
−1√

2
=

π

4

and ϕ = cos−1
−1√

4
=

3π

4
.

For two vectors a and b the vector projection of a onto b is given by
(

a · b̂
)

b̂ = (|a| cos θ)b̂.

The dot product a · b̂ = |a| cos θ, i.e., the magnitude of the projection of a in the direction
of b̂. This is called the scalar projection of a onto b̂, or scalar component of a in the direction
of b̂.

|a| cos θ

b̂

a

θ

Let p be a vector in the Cartesian frame, so that i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1),
then

p = p1i + p2j + p3k.

Let θ1 the angle between p and i, then

cos θ1 =
i · p
|i||p|

=
p1

|p| .

Similarly, the angle θ2 between p and j is given by cos θ2 = p2/|p| and the angle θ3 between p

and k is given by cos θ3 = p3/|p|. These are called the direction cosines of the vector p with
respect to the axes (i, j, k). Note that cos2 θ1 + cos2 θ2 + cos2 θ3 = 1.

Example 2.5. Are the points P1 = (1, 3,−2) and P2 = (4,−2, 1) on the same side of the

plane 3x + 4y − z = 1?

Let A be a point on the plane and n be a vector normal to the plane. Let x =
−−→
AP1 and y =

−−→
AP2.

Consider x ·n and y ·n. If both points are on the same side of the plane, the sign of the scalar

products will be the same. Let A = (0, 0,−1) be a point on the plane, then n = (3, 4,−1) and

x = (1, 3,−2) and y = (4, 2,−2). So

x · n = (1, 3,−1) · (3, 4,−1) = 16 and y · n = (4, 2,−2) · (3, 4,−1) = 22.

So both points are on the same side of the plane.

11
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n

P1

P2

A

2.5 The Cross Product

As we have seen, any two non-parallel vectors, a, b can be used to define a plane. A unit
vector n̂ which is normal to the plane can be found by the cross product (often called vector
product, as the output of this operation is a vector) as

a × b = n

= n̂|a||b| sin θ (15)

where θ is the smaller angle between the two vectors, that is 0 ≤ θ ≤ π.

b

n

a

θ
b

−n

−a

ϕ = π − θ

For a pair of non-parallel vectors a = (a1, a2, a3) and b = (b1, b2, b3), in a Cartesian frame
(i, j, k) then the vector product is given by n = (n1, n2, n3) = n1i + n1j + n3k as

a × b = n

= n̂|a||b| sin θ

= (a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k. (16)

12
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The magnitude of the vector n given by the cross product is equal to the area of the parallel-
ogram with sides a and b. However the order in which the cross product is taken is significant
as the cross product is anti-commutative, that is a × b = −b × a.

If |a| 6= 0 and |b| 6= 0 but a× b = 0 then sin θ = 0, so either θ = 0 or θ = π, i.e. the vectors
are parallel or anti-parallel.

Example 2.6. Find the area of the triangle with vertices A = (1, 1, 1), B = (2, 3,−2) and

C = (1, 2, 4).

Let r =
−−→
AB = (1, 2,−3) and s =

−→
AC = (0, 1, 3). The area of the triangle is given by ∆ =

1

2
|r||s| sin θ =

1

2
|r × s|.

r × s = (1, 2,−3) × (0, 1, 3)

= (2 ⋆ 3 − (−3) ⋆ 1,−1 ⋆ 3 − (−3) ⋆ 0, 1 ⋆ 1 − 2 ⋆ 0)

= (9,−3, 1)

Thus area of the triangle is ∆ =
1

2

√
92 + 32 + 12 =

1

2

√
81 + 9 + 1 =

√
91

2
.

Example 2.7. Write down the equation of the plane through the point (1, 2, 3) and parallel to

the vectors a and b, where a = (1, 0,−1)T and b = (3, 1, 1)T .

P

a

b

As

a × b = (1, 0,−1)T × (3, 1, 1)T = (1,−4, 1)T

then the general equation of a plane is then given by x − 4y + z = d. On substituting x = 1,
y = 2 and z = 3, then d = −4 so that the equation for the plane becomes x − 4y + z = −4.

Example 2.8. Find the angle between the two planes Π1 and Π2 and find the line of intersec-

tion, when

Π1 : y + 3z = 0 and Π2 : x + 2y − 3z = 4.

Let the angle between the two planes Π1 and Π2 be ϕ, which is given by ϕ = π − θ, where θ is

the angle between their two normals, n1 and n2, where n1 = (0, 1, 3)T and n2 = (1, 2,−3)T .

13
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Thus

θ = cos−1

(

n1 · n2

|n1||n2|

)

= cos−1

(

0 + 2 − 9√
10

√
14

)

= cos−1

(

−
√

7

2
√

5

)

⇒ ϕ = π − cos−1

(

−
√

7

2
√

5

)

.

Π1

Π2 r

θ

The vector along the line of intersection is given by n1 ×n2 = (−9, 3, 1)T . A point on the line

of intersection can be found by solving the under-determined pair of simultaneous equations for

the planes. For the equation for Π1 let y = 3, hence z = −1. Then substituting these values

into Π2 gives x = −5. Thus the line of intersection is given by

r =





−5
3
−1



 + λ





−9
3
1



 .

2.6 Scalar Triple Product

The scalar triple product is given by the dot product of one vector with the cross product
of two other vectors. The output of the operation is a scalar.

p · (q × r) = (p × q) · r (17)

= (r × p) · q (18)

= − (p × r) · q. (19)

Strictly speaking the brackets are not necessary as the cross product must be performed first
in order to produce another vector on which to apply the dot product.

On remembering that (p × q) = − (q × p) we note that swapping two of the vectors once
simply changes the sign. Hence a cyclic rotation of vectors an even number of times does not
alter the sign. For a proof of this property see the appendix.

14
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Geometric Interpretation

As seen q × r = n = n̂|q||r| sin θ is a normal vector whose magnitude is equal to the area
of a parallelogram with sides q and r and angle θ.

q

p

n

r

θ

ϕ

The volume of the parallelepiped formed by p, q and r and be calculated by the area of the
base parallelogram times the height, which is given by |p| cos ϕ

p · (q × r) = n · p
= |n||p| cos ϕ

= |q||r||p| sin θ cos ϕ. (20)

2.7 Vector Triple Product

The vector triple product is the cross product of one vector with the cross product of
another two. The output of the operation is a vector formed as

a × (b × c) = v

= (a · c) b − (a · b) c. (21)

The order and position of the brackets is important

a × (c × b) = −v,

(b × c) × a = −v,

(c × b) × a = v

(22)

As v is in the plane of b and c then (a × b) × c will give a different result to a × (b × c)

(a × c) × b = (b · a) c − (a · c) b,

(a × b) × c = (c · a) b − (c · b) a.
(23)

For a proof of the vector triple product see the appendix.

15
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2.8 Pairs of Lines in Three-Dimensional Spaces

Consider two lines r1 and r2 in three-dimensional space given by

r1 : a1 + λv1 and r2 : a2 + µv2.

There are four possible situations:

1. Coincident lines : lines intersect everywhere

2. Intersect at a point : lines intersect once

3. Parallel : lines never intersect

4. Skew : lines never intersect

In order to ascertain the number of intersections between a pair of lines there are a number of
tests which can be performed systematically:

a1

a2

a1 − a2

r2

r1

• Let |v1 × v2| = 0 then the direction vectors are parallel, that is v̂1 = ±v̂2

– If | (a1 − a2) × v1| = 0 the lines share a common point, hence they are co-incident.

– Else, if | (a1 − a2) × v1| 6= 0 the lines are parallel.

• If |v1 × v2| 6= 0 the lines are neither parallel nor coincident. We will test whether they
are coplanar.

– If r1 and r2 are coplanar then a normal vector to the plane exists, given by n =
v1 × v2. Then as a1 − a2 will lie in the plane, it must be normal to n. Hence the
dot product between the two vectors must be zero. Thus if (a1 − a2) · (v1 × v2) = 0
the lines are coplanar and non-parallel, hence they must intersect once.

– If (a1 − a2) · (v1 × v2) 6= 0 they are skew and do not intersect at all.

The most common situation is skew lines. In many situations it is of interest to know the
shortest distance between a pair of lines and the corresponding points on each line.

The shortest distance between a pair of skew lines is a line mutually perpendicular to them
both.

16
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a2

a1

r1

r2

m

P2

P1

R1

R2

Let m = v1 × v2 and consider

(a1 − a2) · m̂ =
−−−→
P2P1 · m̂

=
(−−−→
P2R2 +

−−−→
R2R1 +

−−−→
R1P1

)

· m̂

=
−−−→
R2R1 · m̂

= |−−−→R2R1|.

As
−−−→
P2R2 is perpendicular to m̂ then

−−−→
R2P2 · m̂ = 0. Also as

−−−→
R2R1 is parallel to m̂ then−−−→

R2R1 · m̂ = |−−−→R2R1|. Therefore the length of the common perpendicular is (a1 − a2) · m̂ which
is given by

(a1 − a2) · (v1 × v2)

|v1 × v2|
. (24)

Example 2.9. Find the minimum distance between the two cylinders A and B, where cylinder

A has radius 5 and axis direction (1, 2, 4) which passes through the origin. Cylinder B has

radius 3 and axis direction (2, 1,−3) and passes through (10,−5, 7).

Let v1 = (1, 2, 4)T
and v2 = (2, 1,−3)T

with a1 = (0, 0, 0) and a2 = (10,−5, 7). Now

v1 × v2 = (−10, 11,−3)T , so |v1 × v2| =
√

102 + 112 + 32 =
√

100 + 121 + 9 =
√

230 . As

(a1 − a2) · (v1 × v2) = (−10, 5,−7)T · (−10, 11,−3)T = 100 + 55 + 21 = 176 then the mini-

mum distance will be 176/
√

230 − 8.

Example 2.10. Find the distance between the two lines

r1 : x = y − 1 = 4 − z,

r2 : x − 2 =
2y + 4

2
= −z.

In the standard form
x − α

l
=

y − β

m
=

z − γ

n
, where (α, β, γ) is a point on the line and

(l, m, n)T
a vector along it

r1 :
x − 0

1
=

y − 1

1
=

z − 4

−1
= λ,

r2 :
x − 2

1
=

y + 2

1
=

z − 0

−1
= µ.

17
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Thus for both lines v1 = v2 = (1, 1,−1)T
. Thus they are parallel. As a1 = (0, 1, 4) and

a2 = (2,−2, 0) then a1 − a2 = (−2, 3, 4). The distance is given by

D = |a1 − a2| cos θ

= |a1 − a2| sin (π/2 − θ)

= |v̂1 × (a1 − a2) |

= | 1√
3

(7,−2, 5) |

=

√

49 + 4 + 25

3

=
√

26 .

v̂1

d

r1

r2

a1 − a2

θ

ϕ

18
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3 Matrices

As we have seen vectors can be used to describe a distance and a direction in space. A way
of handling vectors, that is scaling them and rotating them, is to use matrices.

This is the geometric definition of a matrix. An alternative application for matrices is to
express systems of simultaneous linear equations in a compact, easy to manipulate, form.

A matrix is a rectangular array of numbers. An (n × m) matrix will have n rows and
m columns. The entries of a matrix are called elements. A matrix A will have elements ai,j

which denotes the elements on ith-row and jth-column. A matrix is said to be a square matrix
if n = m, i.e. the number of rows is the same as the number of columns.

3.1 Addition of Matrices

Two matrices of the same size can be added together by adding together each individual
element. Thus if A and B are (n × m)-matrices then the (n × m)-matrix C = A + B has
elements ci,j = ai,j + bi,j .

3.2 The Transpose of a Matrix

The transpose of an (n × m)-matrix A is denoted by AT and is an (m × n)-matrix com-
prising of the elements aj,i. An matrix which is equal to its own transpose i.e. A = AT is said
to be a symmetric matrix. A symmetric matrix must be a square matrix where element-wise
ai,j = aj,i. A matrix which is equal to A = −AT is said to be skew-symmetric matrix or
anti-symmetric matrix. In this case ai,j = −aj,i.

3.3 Matrix Multiplication

An (n×m)-matrix A can be multiplied by a scalar α by simply multiplying each element ai,j

by α. Thus if B = αA then bi,j = αai,j .

Example 3.1. A matrix A multiplied by α = 2

A =

(

14 2
−1 −4

)

, then αA =

(

28 4
−2 −8

)

An (n × m)-matrix A can multiply a vector v of length n to give a new vector x of length n,
i.e. Ax = x whose elements are given by

xi = ai,1vi + ai,2vi + · · · + ai,nvi =
n

∑

k=1

ai,kvi where 1 ≤ i ≤ m.

Example 3.2. For

A =





1 4 2
0 0 3

−1 5
√

2



 and v =





2
1
5





the matrix-vector product is given by

x = Av =





1 4 2
0 0 3

−1 5
√

2









2
1
5



 =





2 + 4 + 10
15

−2 + 5 + 5
√

2



 =





16
15

5
√

2 − 3



 .
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Matrix-vector multiplication is a specific case of a more general matrix-matrix multiplication
on assuming a n-dimensional vector to be a (n × 1)-matrix. However multiplication of two
matrices is only well defined when the number of columns of the left matrix is equal to the
number of rows of the right matrix. If A is an (m × n)-matrix and B is an (n × p)-matrix,
then their matrix product C = AB is the (m × p)-matrix whose entries ci,j are given by the
dot-product of the corresponding ith-row of A and the corresponding jth-column of B:

ci,j = ai,1b1,j + ai,2b2,j + · · · + ai,nbn,j =
n

∑

k=1

ai,kbk,j where 1 ≤ i ≤ m and 1 ≤ j ≤ p.

A (2 × 2)-matrix A multiplies a (2 × 2)-matrix B where

A =

(

a1,1 a1,2

a2,1 a2,2

)

and B =

(

b1,1 b1,2

b2,1 b2,2

)

to give a (2 × 2)-matrix C

C = AB =

(

c1,1 c1,2

c2,1 c2,2

)

=

(

a1,1b1,1 + a1,2b2,1 a1,1b2,1 + a1,2b2,2

a2,1b1,1 + a2,2b2,1 a2,1b2,1 + a2,2b2,2

)

.

If D = BA then the (2 × 2)-matrix D is given by

D = BA =

(

d1,1 d1,2

d2,1 d2,2

)

=

(

a1,1b1,1 + a2,1b1,2 a2,1b1,1 + a2,2b1,2

a1,1b2,1 + a2,1b2,2 a2,1b2,1 + a2,2b2,2

)

.

A fundamental difference between matrices and integers, real and complex numbers is that
matrix multiplication is not commutative, that is AB 6= BA.

Example 3.3. For

A =

(

1 4
0 −1

)

and B =

(

2 −1

1
√

2

)

find AB and BA.

On multiplication

AB =

(

1 4
0 −1

) (

2 −1

1
√

2

)

=

(

2 + 4 −1 + 4
√

2

−1 −
√

2

)

=

(

6 −1 + 4
√

2

−1 −
√

2

)

and

BA =

(

2 −1

1
√

2

) (

1 4
0 −1

)

=

(

2 8 + 1

1 4 −
√

2

)

=

(

2 9

1 4 −
√

2

)

.
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3.4 Types of Matrices

1. A null matrix, denoted as 0 is an (n × m)-matrix whose elements are all zero, that
is ai,j = 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.

2. The identity matrix In is an (n × n)-matrix with elements ai,j = 0 for all i 6= j and
ai,j = 1 for all i = j.

3. The identity matrix is a specific case of a diagonal matrix, which is an (n × n)-matrix
with elements ai,j = 0 for all i 6= j.

4. A triangular matrix is a matrix whose elements either above or below the main diagonal
are all zero. An lower triangular matrix is denoted by L and a upper triangular
matrix denoted by U .

L =

















l1,1 0
l2,1 l2,2

l3,1 l3,2
. . .

...
...

. . .
. . .

ln,1 ln,2 . . . ln,n−1 ln,n

















and U =

















u1,1 u1,2 u1,3 . . . u1,n

u2,2 u2,3 . . . u2,n

. . .
. . .

...
. . . un−1,n

0 un,n

















.

5. A rotation matrix R (θ) is a (n × n)-matrix which on multiplying a vector rotates the
vector by an angle θ. A rotation matrix can be written in the form

R (θ) =

(

cos θ − sin θ
sin θ cos θ

)

.

6. The inverse of an (n × n)-matrix A is an (n × n)-matrix B = A−1 such
that AB = BA = In.

7. A matrix is said to be singular if it does not have an inverse.

The inverse of identity matrix is simply the identity matrix. The inverse of a diagonal matrix A

whose non-zero elements are ai,i = λi is the diagonal matrix B whose non-zero elements are
given by bi,i = 1/λi. For a general (2 × 2)-matrix A its inverse is given as

A =

(

a1,1 a1,2

a2,1 a2,2

)

then A−1 =
1

a1,1a2,2 − a1,2a2,1

(

a2,2 −a1,2

−a2,1 a1,1

)

. (25)

Thus a (2 × 2)-matrix is singular when a1,1a2,2 − a1,2a2,1 = 0.

Example 3.4. The inverse of the matrix A is given by B = A−1 where

A =

(

1 −2
6 4

)

and B =

(

1/4 1/8
−3/8 1/16

)

as

AB =

(

1 2
6 −4

) (

1/4 1/8
−3/8 1/16

)

= BA =

(

1/4 1/8
−3/8 1/16

)

=

(

1 0
0 1

)

= I2.
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A Apppendix

Proof of Scalar Tiple Product

To show that

q · (p × r) = −p · (q × r)

let s = p + q. Now consider

s · (s × r) = 0

which is zero as the cross product s × r will be perpendicular to both s and r, then the dot
product of this vector with s will be zero. Thus,

0 = (p + q) · ((p + q) × r)

= (p + q) · (p × r + q × r)

= p · (p × r) + p · (q × r) + q · (p × r) + q · (q × r)

= p · (q × r) + q · (p × r) (26)

Hence

p · (q × r) = −q · (p × r) . ¥

Proof of Vector Tiple Product

To show that v is in the plane of b and c, let the x-axis be parallel to b and c to lie in the
xy-plane, then

a =





a1

a2

a3



 , b =





b1

0
0



 and c =





c1

c2

0



 .

Hence b × c = (0, 0, b1c2)
T . Thus

a × (b × c) =





a2b1c2

−a1b1c2

0



 .

Now let d1 = a2b1c2 and d2 = −a1b1c2 then a× (b × c) = d = (d1, d2, 0) which lies in the plane
containing b and c. To show that a × (b × c) = λb + µc. Multiplying out

a × (b × c) =





a2b1c2 − a1b1c1 + a1b1c1

−a1b1c2

0





= (a2c2 + a1c1)





b1

0
0



 − a1b1





c1

c2

0





= (a2c2 + a1c1) b − a1b1c

= (a · c) b − (a · b) c. ¥
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