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Therapeutic Ultrasound



High Intensity Focused Ultrasound

High-intensity focused ultrasound is

• Non-ionizing – no harmful side effects, can be performed many times without accumulating
dose

• Non-invasive – no cutting, so reduced risk of infection, shorter recovery time

• Selectively target regions within patient – can target regions surrounded by sensitive
structures, can be used in some hard to access regions, and spares healthy tissue

• In many case, can be monitored in real time, so can see the correct dose is being delivered to
the correct location
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Main mechanisms of therapeutic action:

Thermal
Heating tissue through absorption of the acoustic energy [1]. Approved for clinical use and
reimbursement in a number of cases.

and

Mechanical
Rupturing tissue through either acoustic wave or through bubble nucleation and collapse
(histotripsy) [2].

Subsequently,

Immune
There is increasing evidence that the thermal and mechanical effects of ultrasound can stimulate
an immune response [3].
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Local Heating 1

Figure 1: As the strength of the applied ultrasound field increases, cavitation is detected. Cavitation activity, in
blue, is correlated with increased heating, in red, [4].
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Local Heating 2
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Figure 2: Isolated instance of cavitation activity near the temperature measurement device
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Local Heating 3
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Figure 3: Sustained cavitation activity near the temperature measurement device
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Bubble oscillations were one of the very first examples of nonlinear dynamical system, dates back
to a publication from 1976 [5]
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Governing equation for the change in the radius of a bubble, driven by an external acoustic field, is
given by the second-order nonlinear ordinary differential equation

ρ

(
R̈R +

3
2 Ṙ2

)
= pg (R) + pv − p (t)− 2σ

R − 4µṘ
R

+

∫ b

a

τrr

r ds +
R
c

d
dt (pg − p) .

(1)

density (internal) gas pressure vapour pressure
surface tension

viscosity

rheological effects
2nd order correction,
c is speed of sound

Typically rheological effects are ignored, as at scales considered, tissue behaves like a fluid to the
bubble.
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The governing equation can accurately predict bubbles dynamics.

Figure 4: From [6, 7]
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Bubble Dynamics & Inertial Collapse



With increasing pressure, the bubble oscillates in a nonlinear manner. This is interpreted to mean
that the oscillations from a sinusoidal applied field are not well approximated by a linear oscillator.

Note that the bubble collapse occurs during the rarefaction phase of the applied acoustic wave.

The bubble expands too much and can not support itself and collapses.

Such a collapse is said to be inertially driven, and referred to as inertial cavitation
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Inertial cavitation typically occurs when the maximum radius is more than twice the initial radius.

Cavitation can be either stable or transient, and either inertial or non-inertial. Most measurements
of cavitation activity are either stable non-inertial or transient inertial cavitation. Inertial cavitation
is often assumed to be chaotic (and transient).

The stable, non-inertial oscillations can be used to open the blood-brain-barrier and deliver drugs
to the brain [8].
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Figure 5: Inertial cavitation cavitation is characterised by a sudden change in the expansion of the bubble and
rapid collapse if the initial radius of the bubble changes slightly. Only for inertial cavitation is enhanced heating
observed.
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Figure 6: Bifurcation diagram for R0 = 1.4 µm: one-period at P = 0.13 MPa, two-period at 1.35 MPa, four-period
at 0.1375 MPa and quasi-periodic at 0.14 MPa.

14



0

1e-5

2e-5

3e-5

4e-5

5e-5

6e-5

7e-5

.00185 .0019 .00195 .002 .00205 .0021 .00215

R
[m
]

t [s]

0

1e-5

2e-5

3e-5

4e-5

5e-5

6e-5

7e-5

.00185 .0019 .00195 .002 .00205 .0021 .00215

R
[m
]

t [s]

0

1e-5

2e-5

3e-5

4e-5

5e-5

6e-5

7e-5

.00185 .0019 .00195 .002 .00205 .0021 .00215

R
[m
]

t [s]

0

1e-5

2e-5

3e-5

4e-5

5e-5

6e-5

7e-5

.00185 .0019 .00195 .002 .00205 .0021 .00215

R
[m
]

t [s]

Figure 7: Radius-time curves beyond show period-doubling cascade to chaos.

15



The thresholds for unpredictable oscillations, which are associated with large oscillation, inertial
collapse, and increase heat deposition can be investigated. The resonant frequency of the system
is given by

ω∗ =

√
4σ
ρR3

0
+

3 (p∞
0 − pv)

ρR2
0

where p∞
0 is the ambient pressure. The Blake critical radius is given by

Rc = R0

√
3R0

2σ +

(
p∞

0 − pv +
2σ
R0

)
.

Investigate the dynamics in the neighbourhood of the critical radius. Let ε = 2 (1 − R0/Rc) and set
R = R0 (1 − εx) and scale τ = ω∗t, so that

ω∗ =

√
2σε
ρR3

0
.
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At O
(
ε2), the Rayleigh–Plesset equation (1) then has the normal form [9]

ẍ + 2ζ ẋ + x (1 − x) = A sin (Ωτ)

where ζ , A and Ω are all O(1) for typical parameters. In the absence of forcing, the system has a
centre at (0, 0) and saddle point at (1, 0). There is a homoclinic orbit to the unperturbed saddle,
given by

x =
1
2

(
tanh2 (τ/2)− 1

)
.

Perform Mel’nikov analysis when the applied acoustic field is considered to be small, yielding a
relationship for chaotic oscillations (sensitivity to initial conditions) in the vicinity of the critical
point, and yields a lower bound for transverse intersection of stable and unstable manifolds of the
perturbed saddle point

A =
2ζ sinh (πΩ∗)

5π (Ω∗)2 .

For nonlinear wave propagation, the bound changes as the forcing term can be expressed as sum of
higher frequency components [10].
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Inertial Cavitation Dose

Integrated broadband noise is defined by taking the Fourier transform of the measured acoustic
signal from bubble activity over a short time period, removing the fundamental and harmonics of
the signal, and integrating the remaining frequency content1.

Figure 8: Spectra of non-inertial and inertial cavitation [11]

1Indeed, the appearance of noise was initially used to characterise chaotic oscillations [5]
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Inertial Cavitation Dose

If the noise is significantly above the typical baseline, then this is a indicator of inertial cavitation,
and is correlated with the bioeffects associated with bubble activity.

Research Question
Can it be proved, that high values of integrated broadband noise, i.e. a dense frequency spectrum,
or area in Poincaré section / stroboscopic map, imply inertial cavitation?
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Bifurcation Type



Period Doubling and Intermittency

Bifurcation diagrams show, at kilohertz frequencies, and above, a subharmonic, period-doubling
route to chaos [12].

De la Rosa [13] presented bifurcation diagrams which suggested that at far lower ultrasonic
frequencies driving frequencies, oscillations were more like intermittency route to chaos from a
saddle-node bifurcation.
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Period Doubling and Intermittency

Can the path of the attractor be traced through a parameter space at the critical pressures for a
given frequency at which chaos is observed, and compute quantitative differences, as per Gilpin [14]
between 70 kHz and 500 kHz.
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Interaction



Due to pressure fields emitted due to collapse, the bubbles will interact. For a pair of equally sized
interacting bubbles, the governing equation is given by

ρ

(
R̈R +

3
2 Ṙ2 +

R
D

(
RR̈ + 2Ṙ2

) )
= pg (R) + pv − p (t)− 2σ

R − 4µṘ
R

+

∫ b

a

τrr

r ds +
R
c

d
dt (pg − p) .

(2)

density gas pressure vapour pressure
surface tension

viscosity

rheological effects
2nd order, c is speed of sound

interaction, D is distance between bubbles

How does the underlying dynamics change with multiple interacting bubbles?

Rössler proposed the notion of hyperchoas [15]: a dynamical system with a bounded attractor set,
on which there are at least two positive Lyapunov exponents.
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It has been conjectured, based on delay embedding reconstructions of the phase space from
experimentally observed data, that phase synchronisation occurs with a bubble cloud as the
reconstructed attractor has an embedding dimension slightly greater than two [16, 17, 18], whereas
the number of degrees of freedom of the governing equations would be exceptionally large.

Furthermore, the received signal from an oscillating cloud of bubbles contains a subharmonic
component of magnitude which can not be derived from models where a collection of single
bubbles with differing radii oscillate independently.
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Figure 9: Lyapunov exponent of pair of bubbles, at distance of 100 µm.
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A single positive Lyapunov exponent suggests that one bubble is oscillating in an unpredictable
manner, hence the reradiated field is also chaotic. This field, combined with the applied field, then
drives the other bubble in a deterministic manner.

The existence of two positive Lyapunov exponents suggests that each bubble is oscillating in an
chaotic manner.

Question
Are there parameter regimes in which each bubble, without interaction, would oscillate in a
regular manner, but with interaction has a two positive Lyapunov exponents?
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Figure 10: Bifurcation diagram for coupled bubble pair as initial radius R2 is varied, showing when the time of
collapse within an acoustic cycle.
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Control



Koopman Operators and Control

Can the behaviour of the bubbles be controlled?

As seen, the state space is complicated.

Koopman operator theory seeks to transform nonlinear dynamics from state space to linear
dynamics in Koopman-invariant function space.

ẋ = f (x) 7→ ġ = Kg

The formulation as a linear system allows for classical, realisable, control strategies to be derived
and employed. Two main control functions are the linear-quadratic regulator (LQR) and the
model-predictive control (PMC).

27



Koopman Operators and Control

The Koopman operator, K, is infinite-dimensional, acts on observable, g (x) : M → R.

Apply spectral theory,

φ̇k (x) = Kφk (x) = λkφk (x)

for eigenfunctions φk of the operator. So that

g (x) ≈
n∑

k=1
vkφk (x)

for n complex eigenfunctions [19, 20], where the Koopman operator is defined as

Kt0 g (x) = g (x (t + t0)) ⇒ Kg = lim
t0→0

Kt0 g − g
t0

.
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Koopman Operators and Control

Gibson, Yee and Calvisi [21] approximated the

• Koopman eigenfunctions using sparse identification of nonlinear dynamical
systems (SINDy) [22] with fourth-order polynomials

and used

• Hankel dynamic mode decomposition (HDMD) [19] to compute the complex eigenvalues.

The training data used to approximate the Koopman operator was the oscillation of a single
simulated bubble modelled by the Rayleigh-Plesset equation (1) without forcing.

The initial radius of the bubble was set to 37% of its equilibrium value so that the bubble expands
(reaching close to twice its equilibrium radius) and the resulting oscillations are nonlinear.
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Koopman Operators and Control

Gibson, Yee and Calvisi [21] construct a cost function of the form

JΩ =
1
2

∫ ∞

0

(
QTRQ + uTRu

)
dt

where u is the control forcing term, Ω is the matrix comprised on the real and imaginary parts of
the Koopman eigenfunctions, and Q = QI, R = RI, where Q and R are scalar tuning parameters.

Solved subject to a constraint on the evolution, yielding a state-dependent algebraic Ricatti
equation.
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Koopman Operators and Control

31



Koopman Operators and Control

Figure 11: Red regions are those which fail to stabilize a bubble to a target radius, from [21, Fig 16].
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Pulsed Doppler Imaging



Imaging Bubbles

It is desirable to be able to see bubbles caused by pulsed high-intensity focused ultrasound in
tissue. These are a source of damage. These bubbles only exist for a up to a few hundred
millisecond though.

Bubble Doppler sends an ultrasound pulse, then an sequence of planewave pulses which are used
to reconstruct an image.

The fundamental idea of ultrasound imaging is to take a set of received time signals and, based on
the amplitude of the envelope of the signals, form an image of the tissue properties.
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Imaging Bubbles

However, extracting bubble dynamics from clutter and other phenomena requires a filter. Typically
a singular value decomposition or infinite impulse response filter is used.

In the context of Doppler imaging these are referred to as wall filters as the aim was to remove
motion of vessel wall from the

Recently dynamic mode decomposition was applied to separate the slow and fast time scales in
time signal data [23, 24] which is used to reconstruct ultrasound images.
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Imaging Bubbles

Figure 12: Schematic of pipeline from [24] showing spatial and temporal identification of transient bubble
dynamics.
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Summary



Conclusions

• Clinical challenge is problem in nonlinear dynamics, with highly uncertain coefficients.
• Chaotic oscillations are likely to occur
• Broadband noise should be rigorously explained

• In bubble-bubble interactions attractor may exist in high dimensions – what are the
consequences for bifurcations and received signal?

• Koopman operator theory has been employed to investigate control of bubbles [20, 21], but for
single, free bubbles.
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Open Problems

• Formal proof that broad noise is a result of chaotic oscillations of a single bubble, and that
there are no other explanations.

• Does the dimension of the attractor scale with the number of bubbles?
• What other mechanisms produce broadband noise? What does broadband noise say about Poincaré
sections

• Attractor reconstruction/continuation as driving frequency changes

• Construct Koopman operator for
• multiple bubbles, firstly of pair of equally size interacting bubbles
• populations of mono-disperse encapsulated microbubbles
• Multiple target radius?
• Derive a Koopman operator based on either simulated or measured observables, i.e. the re-radiated
signal from a bubble, rather than radial oscillations

g(R) = R
(

RR̈ + 2Ṙ2
)

could be propagated through material and averaged over the area of the sensor
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Thankyou for your attention

Any questions?

 david_sinden davidsinden.bsky.social
 david.sinden@mevis.fraunhofer.de
 github.com/djps/rayleigh-plesset
 djps.github.io
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