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Examples and principles of mathematical modelling in medicine:
Exercises

The rationale of these exercises is to introduce many of the current clinical challenges in image-guided
therapies. Many of the exercises are open problem. As such solutions are not be provided.

Microwave Ablation

Exercise 1: At up to 2.45 GHz, assume that steady state solutions and derive the curl-curl form of Maxwell’s
equations.

Exercise 2: Show that the discrete Maxwell equations on a Yee-cell maintain the divergence relations exactly.

Exercise 3: Write the curl-curl form of Maxwell’s equations for vector fields of the form
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Exercise 4: With the left and right preconditioners, K1 and K2 which are used to solve the linear system Ax = b,
via the transformed system Ãx̃ = b̃, with Ã = K−1

1 AK−1
2 , x̃ = K2x and b̃ = K−1

1 b, formulate the preconditioned
BiCGStab(ℓ) algorithm, based one the unpreconditioned system in Algorithm 1. An open problem is which other
algorithms, such as IDR(s)Stab(ℓ), could out perform the stretched coordinate left- and right-preconditioned
BiCGStab?

Cryoablation

Exercise 1: Sketch an method to ascertain what is the best update time for the heat equation when considering
changes in material properties? Assume that the number of iterations of an iterative solver is proportional to
an matrix norm ∥δAn∥X , where δAn = An −An−1, where A is the discretized operator for the heat equation,
which is dependent on the material properties A (ν).

Exercise 2: Construct a scheme to account for contraction and expansion in tissue as the temperature of the
material changes, by coupling the thermal field to a deformation field. Consider how to update the thermal
field deformation field. What boundary conditions can be imposed on the deformation field?

Exercise 3: Construct a homogenization scheme which considers the internal and external components of each
cell to derive effective thermal conductivity.

Exercise 4: If in the segmentation of a frozen region in a 2D image and the 0◦C isothermal can be characterised
as ellipses with uncertain foci and semi-major and minor axis which are Gaussian variables with some mean
and standard deviation, what

Ultrasound

Exercise 1: Assume that the surface of a ultrasound transducer is characterised by a function f (x, y). Given the
(hyperbolic) form of the acoustic wave equation in image space (x, y, z), in terms of the variables q = (ρ, ρu, ρv, ρw),
where ρ is the density and u, v and w are the components of the velocity vector,

qt + f (q)x + g (q)y + h (q)z = 0
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Algorithm 1 Unpreconditioned BiCGStab(ℓ) algorithm for a complex matrix. Note that the inner product is
the conjugate dot-product, i.e. ⟨x,y⟩ = x∗ · y. paper
1: r0 = (b−Ax0)
2: Choose an arbitrary vector r̂0 such that (r̂0, r0) ̸= 0, e.g., r̂0 = r0
3: ρold = α = ω0 = 1
4: v0 = p0 = û0 = 0
5: while |rj+1| > ϵ and i < N do
6: ρold = −ωρold
7: for j = 0, . . . l − 1 do ▷ (Start of BiCG part)
8: ρnew = ⟨rj , r̂0⟩
9: β = (ρnew/ρold)

10: ρold = ρnew
11: for k = 0, . . . , j do
12: ûk = r̂k − βûk

13: end for
14: ûj+1 = Aûj

15: γ = ⟨ûj+1, r̂0⟩
16: α = ρnew/γ
17: for k = 0, . . . , j do
18: r̂k = r̂k − αûk+1

19: end for
20: r̂j+1 = Ar̂j
21: x = x+ αx
22: end for
23: for j = 1, . . . , l do ▷ (Start of polynomial part)
24: for k = 1, . . . , j − 1 do
25: τk,j = ⟨r̂j , r̂k⟩/σk

26: r̂j = r̂j − τk,j ûk

27: end for
28: σj = ⟨r̂j , r̂j⟩
29: γ′ = ⟨r̂0, r̂j⟩/σj

30: end for
31: γl = γ′

l
32: ω = γl
33: for j = l − 1, . . . , 1 do
34: γj = γ′

j −
∑l

k=j+1 τj,kγk
35: end for
36: for j = 1, . . . , l − 1 do
37: γ′′

j = γj+1 +
∑l−1

k=j+1 τj,kγk+1

38: end for
39: x = x+ γlr̂0 ▷ (Updates)
40: r̂0 = r̂0 − γ′

l r̂l
41: û0 = û0 − γlûl
42: for j = 1, . . . , l − 1 do
43: û0 = û0 − γj ûj

44: x = x+ γ′′
l r̂j

45: r̂0 = r̂0 − γ′
j r̂j

46: end for
47: i = i+ 1
48: end while

which can be written as
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with a simple equation of state p = ρc2, write the governing equation in terms of curvilinear coordinates
(ξ1, ξ2, ξ3), where the transformation between the two frames can be expressed as

x = x (ξ1, ξ2, ξ3) , (1)
y = y (ξ1, ξ2, ξ3) , (2)
z = z (ξ1, ξ2, ξ3) . (3)

This formulation enable the input condition to be well characterised on the plane ξ3, avoiding potential stair-
casing artefacts.
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https://etna.math.kent.edu/vol.1.1993/pp11-32.dir/pp11-32.pdf


Hint: See the doi: 10.1088/0256-307X/30/7/074302 for a formulation in oblate spheriod coordinates.

Exercise 2: Show that for the one-dimensional pseudo-heat equation

∂T

∂x
= κ

∂2T

∂t2
,

a solution of the form

T = Ce
1
2κ

∫ t

0
v(x,τ) dτ

yields the (acoustic) Burgers equation written in terms of the fluid velocity v,

∂v

∂x
− v

∂v

∂t
− κ

∂2v

∂t2
= 0.

Solve the nonlinear acoustic equation with initial condition v (0, t) = sin (t).

Hint: See the doi:10.1063/1.1309185

Exercise 3: Derive the properties of the Γ function, namely for

Γ(s) =

∫ ∞

0

ts−1e−t dt

show Γ(1) = 1 and Γ(n) = nΓ(n− 1), and then generalized form Γ(n) = (n− 1)! ∀n ∈ N+.

Exercise 4: Short pulsed ultrasound may be described by a set of Wavelet basis functions. Write Burgers
equation in terms of a wavelet basis functions and seek a solution.
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