Integrability, localisation and bifurcation of an elastic conducting rod in a
magnetic field

David Sinden
Fraunhofer Institute for Digital Medicine MEVIS, Bremen

7t Workshop on Dynamical Systems & Ergodic Theory in Northern Germany

June 9th 2023

University of Hamburg



Introduction

Arod in a uniform magnetic field

Spatially complex localisation

Hamiltonian-Hopf-Hopf bifurcation

Conclusions



Introduction



- Classical problem: modern approach

-+ The reduction estimated at a dollars over ten years for the international space station
alone [1]

- Tethers need to be described as an elastic rod rather wire

- Highly (geometrically) nonlinear



Cosserat Theory

A Cosserat rod is defined by a centreline r and directors {di, d2, ds}
by
r=v and d;=uxd..

The strains u, v relates the configuration to the balance equations
through the hyperelastic constitutive relations. In order to separate
geometric from material nonlinearities, linear constitutive relations
are chosen throughout

u =my/By, uy=my/By, uz=my/C and vz =1+ nz/K.



Kinetic Analogy

- Parallels between the motion of a heavy spinning top and the static configurations of a rod
under torque and tension

- Arc-length plays the role of time
- Sleeping top - straight rod
- Precession - helical rod

- Homoclinic - localised modes
but:
- Regions of stability reversed
- Simplification, no shear, no extension, no

initial curvature, nonlinear constitutive
relations ...




Simplest rod model is the force-free rod. In the spatial frame

In the director frame

m=J(mVH(m)=mxu

structure matrix and Hamiltonian given by

0 —ms3 ma 1
J=-J"=h= ma 0 -m and ’H:Em~u(m).
—msa my 0

One-dimensional null-space spanned by the gradient of the Casimir

1
VC = ) (ml,mg,mg)T =Ci=m-m.

The system is globally superintegrable [2].



The non-canonical system is in fact a Lie-Poisson system

{fgt,= <u, {% :;ZD

where u € g* and f, g: ¢" — R, with an associated inner product (-, -) and Lie bracket on the Lie
algebra [, ].

The inner product associates elements of the Lie algebra with its dual and the Lie bracket acts on
the function derivatives of fand g with respect to the field variable, that is 6f/du: g — g.



The Poisson bracket is a Lie-Poisson bracket

{ﬁ 9}(m) =—-m- (mex Vmg)~

twist

where the Lie bracket is given by the direct sum of elements

[£n=E&xn

and the inner product is the dot product.

Corresponds to the Euler top.



For a rod under end tension and moment in the spatial frame

m =nxr and n =0.

In the body frame

m )’ A u 1 1
(n>_< O)(v)’ H—§u~m+§(vfd3)~n+n~d3

where ds = (0,0, 1). System has two Casimirs

-

Ci=n-n and Cy=n-m.

If the principal bending stiffnesses are equal, i.e. isotropic, is integrable.

Ilzm-dg.

Other integrable cases: Kovalevskaya and Chaplygin-Goryachev.



The force is fixed in the spatial frame, but rotates in the body frame. The dynamics are generated
by a Poisson bracket with a semi-direct product extension

{f, By = —M- (Vif X Ving) = n - (Vinf X Vag+ Vaf X Ving) .

force

which is a Lie-Poisson bracket for

[(Evu)v(nvv)]:(£><7%6><Ufnxu)-

Corresponds to a heavy top

Superintegrable solutions are helices with additional integral m - m.



Integrability



For a conducting rod in a uniform magnetic field, in the spatial frame (B = Be;)

m =nxr, n=MXexr and e’ =0.
——
Lorentz force, A = IB

In the director frame - noncanonical Hamiltonian system

D>
Y

u
1 1
v, Hzgu‘m+§(v—d3)~n+d3~n.

3
=5 3
™ >

D
[+
D>
w0
o
o O
o



The system has a Poisson bracket:

{1 B mney) =—M (Vaf X Vimg) = n - (Vinf X Vag+ Vaf X Ving)
— €3 (mex v€3g+ vEst Vmg)

evolution of field
—desg - (Vafx Viag)
| R —

effect of field
extended by semi-direct extension, describing the evolution of the magnetic field in the body, and

a cocycle, describing the Lorentz force, called a Liebnitz extension [3]. Lie bracket is

[(57%71’)7(77,”75”)]:(§><77»§><Ufﬁxuafxzfﬁxw*/\uxv)-



A nine-dimensional system with three Casimirs

Cy=e3-e3, Cy=-e3-n and C3=n-n+2xm-e;s,

two additional first integrals when isotropic and inextensible

L =m-d; and L =n-m+ AB;ds-es
and one Hamiltonian
1
H:§u4m+d3~n.

Thus system is completely integrable

Conserved quantities have no immediate physical interpretation.



The family of equations can be generated by a Lax pair [4] with a spectral parameter «

d o A
M = [F(a),dga—f— u] ,
where
() :Kaga+r0+r1a_1—|— .+ Tha " €s0(3), neN,
with

and conserved quantities

1 . -
I = —Zre5|dueuzo (oaZ Yrace [F (a)QD for i=-1,0,1,...,n—1,

1 . -
C; = —Zre5|dueuzo (oaZ Yrace [F (a)QD for i=nn+1,n+2,...,2n



Thus the governing equations for elastic conducting rod in a non-uniform “twisted” hyper-magnetic
field are integrable.

m+rxn=0 n+4+rxB=0, B+rxD=0 and D =0.

Gives B, =y, B, = —1, B, = 0, where (z, y, 2) and (Ba, By, B.) are components of r and B relative to
the spatial frame {e1, e2, €3}, and es is chosen to be in the direction of D. Thus the system
describes a rod in a linearly-varying magnetic field generated by a uniform ‘hypermagnetic’ field D.
Hamiltonian is as before, structure matrix is

Q
Il

o @ >

o O

o o O o

o o O O



Spatial Chaos




Figure 1: The Euler angles relating two coordinate frames.

Euler angles reduce nine-dimensional non-canonical system to six-dimensional canonical system

P2 1 Dy — Pg €OS O 2 pi
H(evpev’(/)aplli):ﬁ‘f'ﬁ(T) +%+02C050

+ sinysingy/Cy — C3 — 2Apy

with two integrals

L = py, L= BilcosO+ Copy

— 4/ Cy — C%2 — 2\py <pgsin1/1—cos1j) (W)) .

sinf



Figure 2: Phase plane at various energy levels at section cos ) = 0.9.



Mel’nikov’'s Method

An approximation to splitting of stable/unstable manifolds
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On the scaling

20, — 5 =ad®>, A=10b6> and Co/K=c6

reduced extensible Hamiltonian takes the form

H& (07 Do, w7p’¢') - 7-tO (07 p9) + 0 (Hi\ (07 wap1P) + Hi (0))
+ 67HE (0,0, p0) + 6°HS (0,4, p0) + O (%)

Mel'nikov’'s method can be applied in three possible cases:

- Perturb Lagrange rod,
- Perturb extensible rod,

- Perturb magnetic rod.




If extensible detailed Mel'nikov analysis shows loss of integrability.

(0,p0)

Mil)(wo)z/:ofo/\fldw:[j {Ho—&-%i,%%} ds

+oo _
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Figure 3: Poincaré sections
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For case (ii)

+o0
MY (o) :/ {Ho,m +H%} i

(0,p0)

but both perturbations are integrable

+oo too N
/ {Ho, H5} g,y ds =0 and/ {Ho,Hl}(9 ds= 0.

Thus second order analysis needs to be performed [5].

1 oo S 1 wO U
MP Wo)=5 | HADS () o+ 3 / fo A D (xt)? dy
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- Homoclinic solutions found numerically with angle v as 'time’ and action Z as Hamiltonian.

- Robust numerical method using bisection method to find first order approximation to flow, x;
computed subject to being bounded and transverse to flow forwards and backwards in time.
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Figure 4: Second order Mel'nikov integral showing existence of simple zero
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Bifurcation




Computation

Ordinarily trivial configuration, a straight twisted rod, is about a fixed point, now it is a periodic
solution = () with period 7.

~(s) =(0,0,0,0,0,0,0,0,sin(s(1 4+ v) /2),cos(s(1 +v) /2)).

Under the 7-mapping « (7) = p the periodic orbit is the fixed point

p=~(r)=(0,0,0,0,0,0,0,0,0,1).
- Computation and continuation of localised solutions needs modification.
- Floquet theory required, monodromy matrix computed.

- No closed form analytical expressions for buckling values.
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The system is reversible. Thus two involutions exist

Ry : (ma, ma, ms3, ma, ng, n3, €31, €32, €33)
(—ml,mz,ms,—n1,n2,n3,€31,—€32,633) and
Ry : (ma, ma, m3, na, ng, na, €31, €32, €33) —

(mh—mz,M3,TL1,—TL27’I’L37631,—632,633) as S+ —s.

R;-Reversible configurations pass through a symmetric section S;

S; =Fix(R;) for ~(nt)=p where with peS,.

Symmetric section is three-dimensional

slz{xeuzé’ : m1(1):n1(1):631(1):o}.

24



- In order to avoid the polar singularity inherent in the Euler angles when # = 0 and reduce the
dimension of the full system Euler parameters are used to convert quantities from the spatial

frame into the director frame.

- The four Euler parameters ¢ = (q1, g2, g3, ga) are subject to

l=g¢ +¢+q+d.

- The ten-dimensional system x = (m, n, ¢) has three Casimirs and a constraint.

25
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A

Figure 5: Spectrum of the monodromy matrix when v = 1/3 with e = 0 (blue), e = 0.05 (cyan) and
e = 0.1 (magenta). The coloured regions correspond elliptic periodic orbits, the dashed lines are
codimension-one curves at which the multipliers are stationary and reverse direction.
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- Shooting from fixed point of a map p over half range into 3D symmetric section S of a
reversibility.

- Three parameter shooting with (81,02, 7)
x(0) = p+ &d1 (v1sin d2 + v cos d2)

where vy and v, are vectors in the two-dimensional unstable linear subspace of the fixed
point p.

- Homoclinic solutions are codimension-zero.

27



Localised solutions are found for isolated branches of the shooting parameters.

Figure 6: A localised solution
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When extensible or anisotropic there are an infinite number of multi-modal solutions comprised of
“primary” uni-modal solutions.

450 100 .50 0 50 100 150

Figure 7: Localised multi-pulse solution
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With Euler parameters 10D monodromy matrix decouples:

- 4D trivial matrix containing Casimirs and constraint,

- 6D nontrivial matrix contains the ‘dynamics.

Projection boundary conditions using auto97 exploiting exponential trichotomies onto
two-dimensional stable and centre manifolds of fixed point of periodic orbit [6]

(Les —p)x=0 where L., e R®*?
along with conditions on three-dimensional symmetric section.

- Ill-posed: an extra boundary condition = truncation length 7 freed.

30



10

o N OB~ O @

T

—

10 |

=T N RS e
I

0.025 0.05)\0.075 0.1 0.125 0 0.025 0.0S)\0.075 0.1 0.125

Hamiltonian-Hopf bifurcations at
- two A+ when m > m.,
R‘“-—» - one A\, when m = m,,
\( - zero when m < mg,

critical values.

0.025 0.05)\0.075 0.1 0.125



10 +
SD—
) 6 W
4 |- T e
2+ L o SN W
0 I ! I L I I I
0 0.02 0.04 0.06 0.08 0.1 012
A
@m=1.9

10

[e2)

1 | I IW
0 0.02 0.04 0.06 0.08 0.1 0.12
A
(b) m = 1.81

- Hamiltonian-Hopf bifurcation about a periodic solution from right A = A_ and left A = A;.
Localised solutions bifurcate into straight twisted rods.

- Localisation-delocalisation-localisation can occur near codimension-two point.



Behaviour of Floquet multipliers for m > m,
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Figure 9: Bifurcation diagram for single and multimodal localised configurations
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Summary




Conclusions

- System is Hamiltonian, Lie-Poisson and completely integrable

- Physical realisation of abstract system [3]

- System is one member in a family of integrable systems expressed by a Lax pair [4]
- Hidden conditions on integrability: extensibility, shearability ...
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Conclusions

- System is Hamiltonian, Lie-Poisson and completely integrable

- Physical realisation of abstract system [3]

- System is one member in a family of integrable systems expressed by a Lax pair [4]
- Hidden conditions on integrability: extensibility, shearability ...

- If extensible non-integrable and has spatially chaotic solutions

85



Conclusions

- System is Hamiltonian, Lie-Poisson and completely integrable
- Physical realisation of abstract system [3]
- System is one member in a family of integrable systems expressed by a Lax pair [4]

- Hidden conditions on integrability: extensibility, shearability ...
- If extensible non-integrable and has spatially chaotic solutions

- Three parameter shooting, exponential trichotomies
- Hamiltonian-Hopf-Hopf bifurcation
- Buckling due to increasing and decreasing external force

- Sequential merging of limit points for multimodal solutions
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Open Problems

- Complete reduction to single degree of freedom system [7] may enable

- Expression of system as an equivalent oscillator
- Fixed point solutions: existence of superintegrable solutions
- Closed form solutions for homoclinic solution: Mel’'nikov method in case (i)

- Action-angle formulation

36
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- Closed form solutions for homoclinic solution: Mel’'nikov method in case (i)

- Action-angle formulation

- Physical interpretation of conserved quantities
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Open Problems

- Complete reduction to single degree of freedom system [7] may enable

- Expression of system as an equivalent oscillator
- Fixed point solutions: existence of superintegrable solutions
- Closed form solutions for homoclinic solution: Mel’'nikov method in case (i)

- Action-angle formulation
- Physical interpretation of conserved quantities

- Normal form for Hamiltonian-Hopf-Hopf bifurcation in the twistless case

36



200 «

Thankyou for your attention.

Any questions?

david_sinden
david.sindena@mevis.fraunhofer.de
github.com/djps/extensibility
djps.github.io
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