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1. Physical Principles
Piezo-electricity

1.

Ultrasound works because of two related properties: when an electric current is applied the
material moves. This is called the inverse piezo-electric effect and this is used to generate the
sound field.

When the material experiences a mechanical stress, it generates a charge. This is used the
piezo-electric effect and is used to generate the signal which is reconstructed to form an image.

Ultrasound is sound above 26.5 kHz, above the range of human hearing, but in medical
applications the frequencies are in the mega Hertz regime (106 cycles per second).
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1. Physical Principles
Therapeutic Transducers

1.

Figure: Image from [17]
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1. Physical Principles
Therapeutic Ultrasound

1.

As the acoustic wave (longitudinal) passes through the body it is absorbed. This leads to a rise in
temperature.

When a continuous wave, high intensity focused ultrasound, HIFU, can be used as a therapy to
heat tissue.

If the waves are very intense, ultrasound can be used to mechanically damage tissue. For the
destruction of kidney stones this is call lithotripsy; the destruction of soft tissue this is called
histotripsy.
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1. Physical Principles
Therapeutic & Diagnostic Ultrasound

1.

Ultrasound is a cheap, real-time, portable imaging modality which can generate lots of data
easily. Because of these reasons there are many machine-learning algorithms which are used to
enhance the low-contrast, noisy images. A disadvantage is that it is operator dependent.

As a therapy, ultrasound is cost-effective, non-ionising, non-invasive, monitorable and able to
selectively destroy small regions of tissue deep with the body.
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2. Fundamentals of Modelling Ultrasound
Typical Simulation Pipeline

2.

In the context of therapeutic ultrasound:

Acoustic
• Westervelt,
• Helmholtz,
• Shear,
• …

Thermal

• Bioheat
equation,

• Porous
medium,

• …

Dose
• Arrhenius,
• Cumulative

Equivalent Minutes,
• …

Update material properties and locations
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2. Fundamentals of Modelling Ultrasound
Westervelt Equation

2.

From first principles 14 quantities are required to model the acoustic wave propagation.
Fortunately this can be reduced down to 7, then 5, then down to a single variable: pressure, p

∂p

∂z
=

c0

2

∫ t
−∞

∇2pdτ︸ ︷︷ ︸
Diffraction

+
2

c30
L [p;α0, η]︸ ︷︷ ︸
Attenuation

+
β

2ρc30

∂p2

∂t︸ ︷︷ ︸
Nonlinearity

captures the three key physical phenomena of

■ Diffraction: the property of a wave to spread as it propagates
■ Attenuation: the absorption of the wave by the medium
■ Nonlinearity: the change in the wave form as it propagates
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2. Fundamentals of Modelling Ultrasound
Computation Challenges

2.

HIFU encounters a challenge in the computation of the state equations: for example implicit,
stable finite-difference time-domain codes in a clinically relevant imaging context [12] requires
calculations of the order of exaflops

exaflop 1018 = 1,000,000,000,000,000,000

extremely computationally expensive
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2. Fundamentals of Modelling Ultrasound
Ultrasound

2.

The formulation of the governing equation and, consequently the solution method, is dependent
on the application.

■ Is the wave pulsed or running continuously? Harmonic solution can be assumed
■ Are there significant scatterers in the domain? One-way solutions could be used.
■ Is the input power high? Does nonlinear propagation need to be considered?
■ Is the transducer a single element or an array? Is it curved or flat?

The review [6] provides an overview of the methods.
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2. Fundamentals of Modelling Ultrasound
Linear: Helmholtz

2.

In the linear case, continuous wave case the acoustic Helmholtz equation is derived.

This can be solved by in many ways, for example by finite-elements, or by boundary elements
methods.

Gi,j =

∫
∂Ω

G (x, xi)ϕ (yi)ds and Hi,j =

∫
∂Ω

Gn (x, xi)ϕ (yi)ds

The assembly of the boundary element matrix is costly, but can be accelerated by either fast
multi-pole methods [3] or hierarchical matrix [7] formulations.
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3. Nonlinearity
Nonlinearity

3.

Nonlinearity arises from the property that very high/low parts of the waveform travel faster than
less intense parts.

The wave steepens.

Consider, in one-dimension, an initially sinusoidal wave p = p0 sin(ωt), then

∂p2

∂t
= p20

∂ sin2(ωt)

∂t
= 2p20ω sin(ωt) cos(ωt)

= p20ω sin(2ωt)

Thus nonlinearity results in the generation of higher frequency components to the wave
equation which are integer multiples of the fundamental frequency.

Note: the equations are weakly nonlinear as the particle velocity is less than the speed of sound.
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3. Nonlinearity
Burgers Equation

3.

In general it is not possible to write down the solution to nonlinear PDEs, but a one-dimensional
version of the Westervelt equation is the acoustic Burger’s equation

∂v

∂x
− βv∂v

∂t
− ∂2v

∂t2
= 0.

where v is the acoustic velocity.

This is solvable and expressions for nonlinear wave propagation can be derived.
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3. Nonlinearity
Wave Steepening

3.

Figure: Evolution of Burgers equation as wave becomes shocked
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3. Nonlinearity
Acoustic to Thermal Coupling

3.

The source term in the thermal model is given by the square of the pressure

qn = 2αI, where I =
N∑
i=1

p2i
ρ0c0

which is generalised for nonlinear propagation.

There is another local absorption mechanism which may be included in applications in which
shock-like waves may be present

qs =
βf0A

3
s

6c40ρ
2
0

The heating is independent of attenuation coefficient. It scales against the cube of the shock
height, As.

16/39 David Sinden: Examples and Principles of Mathematical Modelling in Medicine: Ultrasound



3. Nonlinearity
Shock-like Waves

3.

Tissue is attenuating thus “true” shocks will never occur. So how do we specify when this form of
heating will occur? That is, what is the difference between a nonlinear wave and a shock-like
wave?

The means to distinguish between the two is to observe that shock-like waves will have a finite
shock width.

The physical shock width for acoustic Burgers’ equation is of the order O (ϵ), where ϵ, called the
Goldberg number, is the ratio of nonlinearity to attenuation [5].

17/39 David Sinden: Examples and Principles of Mathematical Modelling in Medicine: Ultrasound



3. Nonlinearity
Shock Enhances Heating

3.

However, when using an operator-splitting approach the resolution of the shock width [10] is
typically O
�p

kϵ
�
. So the spatial resolution, h, must be adjusted accordingly, i.e. h ∼ ϵ, to match

the physical shock width.

Thus, by using exact analytical expression for appearance of shock-like wave, it is possible to
compute the contribution from shock enhanced heating.
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4. Attenuation
Attenuation

4.

Attenuation is comprised of absorption and scatter. There are two fundamental processes which
determine absorption:

■ Viscous heating: absorption is proportional to the square of the frequency: L ∼ ω2 → ∂2p

∂t2
. At

frequencies for medical ultrasound this mechanism is relevant for water.

■ Relaxation processes: L→ ∂ξ

∂t
, where ξ̇ = αξ+ β+ ∇p. In media with a complex molecular

structure, such as tissue, there are a huge number of relaxation processes and the absorption is
accurately modelled by a powerlaw: L [ω] ∼ ωη, where η = 1+ ν.
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4. Attenuation
Single Relaxation Process

4.

Figure: From [11]
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4. Attenuation
Tissue Data

4.

Figure: From [9]
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4. Attenuation
Powerlaw Absorption

4.

For linear propagation each frequency can be solved independently for a given attenuation
factor derived from experiments.

But in general, the frequency-dependent powerlaw for attenuation can lead to an convolutional
integral [15]

L[p] =
∫ t
0
J (τ − t0) ⋆ p(τ)dτ

or as via a fractional operator in time

=
∂νp

∂tν

How this is handled is dependent on the clinical context - whether ultrasound is pulsed or
continuous wave.
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4. Attenuation
Gamma Function

4.

The gamma function is defined as:

Γ(s) =

∫ ∞
0

ts−1e−t dt

As

■ Γ(1) = 1

and

■ Γ(n) = nΓ(n− 1)

then

■ Γ(n) = (n− 1)! ∀n ∈ N+

thus the gamma function can generalise the factorial operator.
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4. Attenuation
Gamma Function

4.
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4. Attenuation
Fractional Derivatives for Polynomials

4.

For a simple monomial function u(x) = xk, with k,a ∈ N+

dau
dxa

=


k!

(k− a)!x
k−a if k ≥ a

0 if k < a

Now generalise for a ∈ R+

=
Γ(k+ 1)

Γ (k+ 1− a)x
k−a
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4. Attenuation
Riemann-Liouville & Caputo Formulations

4.

The definition of a fractional derivative is more involved for general functions. There are a
number of formulations:

■ Grünwald-Letnikov
■ Riemann-Liouville
■ Caputo

Only the Riemann-Liouville formulation ensures that the absorption operator is causal, however,
it is more complicated to implement numerically and, requires initial conditions which are
difficult to ascertain experimentally.
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4. Attenuation
Repeated Integrals

4.
The fractional derivative relies on the definition of the fractional integral. Let an integration
operator be:

Iα [u] (x) =

∫ x
α
u(t)dt

applied again

I2α [u] (x) =

∫ x
α

�∫ t
α
u(s)ds
�

dt.

Cauchy showed

Inα [u] (x) =
1

(n− 1)!

∫ x
α
(x− t)n−1 u (t)dt.

This is easily generalised to fractional terms.
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4. Attenuation
Fractional Derivatives

4.

The fractional derivative relies on the definition of the fractional integral. But the notion of the
fractional integral being the anti-fractional derivative no longer holds.

The fractional derivative, Ds
α of order s ∈ (k− 1,k], with k ∈ N is defined by the kth-derivative of

the (k− s)th-fractional integral

Ds
α
[p] (x) =

1

Γ (k− s)
∂k

∂τk

�∫ τ
α

p (x, s)

(τ − s)s+1−k ds
�

The classical derivative depends locally on the point of evaluation, but fractional derivatives are
dependent on all values between α and x. It is a non-local operator. In ultrasound computation
requires knowledge over the duration of the exposure.
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4. Attenuation
Pseudo-Spectral: k-space

4.

A common approach is to model the system in k-space. This means taking the spatial Fourier
transform in (x, y, z) and mapping to (kx,ky,kz).

As a wave equation, computations are naturally handled in a frequency domain. Another
advantage is that the approximation of the derivative is highly accurate, as

p̂ (k, t+∆t)− 2p̂ (k, t) + p̂ (k, t− ∆t) = −4 sin2 (ck∆t/2) p̂ (k, t) (1)

The frequency dependent power-low for attenuation law is expressed as a fractional
Laplacian [14, 16, 4]

∇ν/2p = ∇2
�
D2−νp
�

Now, the partial differential equation has been transformed into a system of nonlinear ordinary
differential equations which are solved in time.
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4. Attenuation
Pseudo-Spectral: Spatial Marching

4.

Another approach is to consider continuous wave exposures and work in pseudo-spectral domain
taking the Fourier transform in time and two spatial dimensions (x, y), so that a differential
equation, p̂
�
kx,ky, z, ω
�
which is solved in space, stepping forward in zi = z0 + iδz

In this case, the powerlaw, formulated as a fractional operator in time, is simple to handle

∂νp

∂tν
= F−1
�
(−iω)ν F (p)
�
.

This formulation assumes an input plane as an initial condition, which typically is given by
measurement data.
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4. Attenuation
Simulations from Measurements

4.

Figure: Image from [13]
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4. Attenuation
Quadrature

4.

Another approach is to handle the quadrature directly.

Or use oblivious quadrature [2]: this approximates the fractional operator

∂νp

∂tν
=

n∑
j=0

ωn−j
�
p
�
tj
�− χp (0)�

where the weights ω are determined by solving a

�
3− 4ξ+ ξ2

2h

�ν
=

∞∑
j=0

ωjξj
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5. Dose
Dose Equations

5.

Two formulations for the damage, Ω,

■ Arrhenuis component models, based on chemical kinetic models. For example, the first-order
rate equation

[E] [D]
kd leads to Ω =

∫ t
0
Ae−Ea/(RT̄) ds.

■ Cumulative equivalent minutes, typically threshold value of an isothermal dose value of 240
min at 43◦

Ω =

∫ t
0
RT̄(x,t)−T̄refds with T̄ref = 43◦ and R =

§
0.25 for T < 43◦
0.5 for T ≥ 43◦
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5. Dose
Piecewise Continuous Damage

5.

Figure: Many models are based on data from [8] which shows two distinct regimes in which the rates of
damage differ.
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6. Open Problems
Open Questions

6.

■ How does power-law absorption system behave for low power, i.e. discarding nonlinearity,
does a Green’s function exist for the fractional absorption wave equation?

■ In the one-dimensional nonlinear case – fractional Burgers equation – is the system integrable?
Does a Cole-Hopf transformation exist? When do shocks form? What is the shock width?

■ Can a better formulation of the thermal dose equations be derived from a more complicated
rate-reaction scheme?
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7. Code

7.

A key reference is [1], which benchmarks ultrasound code for transcranial applications.

 Comsol: commercial multiphysics finite element solver – axisymmetric, frequency domain models, with
temperature dependency are often used. curvative of transducer accurately resolved

 Sim4Life: combines human phantoms, tissue properties and solvers. Can solve nonlinear acoustic equations
in time-domain.

 k-wave: open-source matlab ultrasound wave pseudo-spectral simulator for diagnostic and therapeutic
applications: compiled C++ and cuda binary can accelerate code.

 FeNiCs: open source automatic finite element library

 HITU_Simulator: A nonlinear axisymmetric beamer simulator (Matlab, GPL-3, GitHub)

 j-wave: open source implementation of k-wave in JAX (optimised automatic differentiation framework)

 BabelBrain: open source acoustic solver for transcranial applications

 Bempp: open source boundary element solver for wave problems
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Thankyou for your attention

Any questions?

 david_sinden
 david.sinden@mevis.fraunhofer.de
 github.com/djps
 djps.github.io
 Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/
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