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Abstract. In the context of forecasting temperature and pressure fields generated by high-
intensity focussed ultrasound, the accuracy of predictive models is critical for the safety and
efficacy of treatment. In such fields ‘inertial’ cavitation is often observed. Classically, estimations
of cavitation thresholds have been based on the assumption that the incident wave at the surface
of a bubble is the same as in the far-field, neglecting the effect of nonlinear wave propagation.
By modelling the incident wave as a solution to Burgers’ equation using weak shock theory, the
effects of nonlinear wave propagation on inertial cavitation are investigated using both numerical
and analytical techniques. From radius-time curves for a single bubble, it is observed that there is
a reduction in the maximum size of a bubble undergoing inertial cavitation and that the inertial
collapse occurs earlier in contrast with the classical case. Corresponding stability thresholds for
a bubble whose initial radius is slightly below the critical Blake radius are calculated, providing
a lower bound for the onset of instability. Bifurcation diagrams and frequency-response curves
are presented associated with the loss of stability. The consequences and physical implications
of the results are discussed with respect to the classical results.

1. Introduction

For materials with a nonlinear stress-strain relationship, such as tissue [1], the point of maximum
compression for a wave may propagate faster than the point of maximum rarefaction, leading to
a distortion in the wave profile and the redistribution of energy from the fundamental harmonic
frequency to higher harmonics. The pressures associated with therapeutic high intensity focused
ultrasound (HIFU) may be high enough for the effects of nonlinear wave propagation to be
significant [2]. As high frequency components are absorbed more easily than those with lower
frequencies, nonlinear wave propagation contributes to increased absorption, enhanced heating
and a subsequent shift in the focal point of targeted ultrasonic beam, potentially damaging
healthy tissue. As well as providing greater predictive accuracy, knowledge of nonlinear wave
propagation will enable increased accuracy in calibration using the received signal generated
by bubble oscillations [3] and thus greater accuracy in treatment procedures. However, in this
paper the implications of nonlinear wave propagation on inertial cavitation are investigated and
stability criteria re-derived in an attempt to reconcile theory and experiment.

The Rayleigh-Plesset equation [4] is a nonlinear equation which determines the size of a
spherical bubble subject to a varying pressure field. Wave propagation from the far-field to
the surface of the bubble is generally assumed to be linear, yet this does not correspond
with experimental observations in the context of high intensity focused ultrasound. Moss [5]
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attempted to incorporate the effects of boundary conditions and global compressibility/local
incompressibility into the Rayleigh-Plesset equation but only considered linear wave propagation.
The equation derived was identical to the classical Rayleigh-Plesset equation if the far-field
pressure is replaced by an attenuated pressure measured within 25 bubble radii of the bubble
surface. In this paper the effect of distortion rather than attenuation of the wave profile and its
effect on the stability of oscillations will be investigated.

Lauterborn and co-workers [4,6] and Smerka [7] showed experimentally and numerically that
bubble oscillations undergo a sequence of period-doubling bifurcations leading to unstable quasi-
periodic (chaotic) oscillations. The period doubling route to chaos occurs through a succession
of saddle-node bifurcations of subharmonic periodic orbits. Homoclinic bifurcations are the limit
of a countable sequence of subharmonic saddle-node bifurcations and thus provide an insight
into the parameters regimes at which unbounded growth occurs.

Mel’nikov’s method provides a measure of the distance between the stable and unstable
manifolds of a periodically perturbed system [8]. If the manifolds intersect transversely once,
they will intersect transversely infinitely many more times. The transverse intersections can be
represented by Smale horseshoes, through which the Smale-Birkhoff theorem give an elegant
description of sensitivity to initial conditions and the resulting chaotic oscillations. Hence the
Mel’nikov criteria marks the first event in a sequence of events leading to unbounded bubble
growth and as such provides a valuable lower bound threshold.

The first application of Mel’nikov’s method to cavitation was performed by Chang and
Chen [9] on the effect of viscosity on the Hamiltonian structure. Szeri [10] computes the first-order
splitting for the Rayleigh-Plesset equation numerically. Harkin [11] performs Mel’nikov analysis
analyically on bubbles whose initial radius is slightly smaller than Blake critical radius. Using
matched perturbation analysis, Harkin derives a second order normal form for the Rayleigh-
Plesset equation. The normal form is a damped driven oscillator. An escape velocity, like
the static Blake criterion, provides an upper bound for when unbounded growth will occur,
whereas Mel’nikov’s method provides a lower bound for when the transition to chaos and
unbounded growth may occur. The fate of bubbles whose initial conditions lie in the intermediate
region between the Mel’nikov and Blake thresholds can be computed by a transport-type
processes [12]. A Bernoulli shift map on two symbols has already been constructed numerically
from a bifurcation diagram for the full Rayleigh-Plesset equation [13] without explicit inference
to sensitivity to initial conditions. In each application of Mel’nikov’s method the incident pressure
wave was sinusoidal [7, 9, 11, 10]. In this paper the analysis is performed for nonlinear waves.

The outline of this paper is as follows, in section 2 nonlinear wave propagation is considered
and wave profiles derived. Then in section 3 the Rayleigh-Plesset equation is introduced and the
effects of nonlinear wave propagation investigated. In section 4 Mel’nikov analysis is performed
for nonlinear wave propagation, providing an improved measure of the values at which quasi-
periodic oscillation and unbounded growth may occur. Finally, conclusions and implications are
discussed in section 5.

2. Nonlinear Wave Propagation

There is no universally accepted system of partial differential equations for the modelling
of ultrasound propagation in biological tissue. Perhaps the best known is the Khokhlov-
Zabolotskaya-Kuznetsov (KZK) equation. The KZK equation is a parabolic wave equation which
includes the effects of diffraction, absorption and nonlinearity of the directed beams [3]. The KZK
equation for an axi-symmetric beam which propagates in the r direction is written in terms of
the acoustic pressure p (r, t) as

∂2p

∂r∂t′
=

c0

2
∇2

⊥p +
D

2c2
0

∂3p

∂t′3
+

β

2ρc3
0

∂2p2

∂t′2
(1)
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where c0 is the initial wave speed, ρ is the density of the medium, β is the standard nonlinearity
coefficient given by β = 1 + B/2A, where B/A is the standard nonlinearity parameter, D is the
sound diffusivity and t′ = t − r/c0 is the retarded time variable. The Laplacian is taken with
respect to the transverse coordinates. The sound diffusivity is given by

D =
1

ρ
(μb + 4μs/3 + κ (1/cv − 1/cp))

where μb and μs are the bulk and shear viscosities respectively, 1 ≤ κ ≤ γ the polytropic
exponent, and cv and cp are the specific heat capacities at constant volume and pressure
respectively. If κ = 1 the system is isothermal, if κ = γ ≡ cp/cv the system is adiabatic. In
the study of cavitation it will be assumed that the bubble is essentially stationary over the
time scales considered and that the distance from the surface of the bubble to the shock front
is constant, so that r is a fixed value at the surface of the bubble. The equation (1) can be
integrated with respect to retarded time to give

∂p

∂r
=

c0

2

∫ t′

−∞

∇2
⊥p (s, t) ds +

D

2c2
0

∂2p

∂t′2
+

β

2ρc3
0

∂p2

∂t′
. (2)

Discarding the effects of diffraction Burgers’, or alternatively the Burgers-Hopf, equation is
recovered

∂p

∂r
=

D

2c2
0

∂2p

∂t′2
+

β

2ρc3
0

∂p2

∂t′
. (3)

If D = 0 the fluid is inviscid, and the so-called lossless Burgers equation is recovered.
From a given driving pressure, f (t), the incident pressure wave, p (t), can be expressed using

weak shock theory. The location of a shock is determined by the Rankine-Hugoniot relation
defining the conservation of flux. The areas enclosed by the multi-valued solution to the left and
right of the shock are equal. Thus, by this symmetry, the shock is positioned at the zero of the
linear solution. For a sinusoidal driving pressure of magnitude P and frequency ω, i.e.

f = P sin (ωt) , (4)

a Fourier expansion of the solution to the lossless Burgers equation yields the Bessel-Fubini or
alternately the Fubini solution

p =
2P

rs

∞∑
n=1

1

n
Jn (nrs) sin

(
ωnt′

)
, (5)

where ωn = nω, Jn is an nth-order Bessel functions of the first kind and rs is the normalised
distance to a shock given by

rs =
r

rc
where rc =

ρc3
0

βωP

is the location of the shock.
Beyond the shock, weak shock theory can once again be employed to find a solution, however,

the resulting analytical solution takes an integral form. An asymptotic solution, valid for,
say rs > 3, is

p =
2P

1 + rs

∞∑
n=1

1

n
sin

(
ωnt′

)
. (6)
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which can be expressed in the time domain as

p =

⎧⎪⎨
⎪⎩

−
P (ωt′ + π)

1 + rs
for − π < ωt′ < 0,

−
P (ωt′ − π)

1 + rs
for 0 < ωt′ < π.

A general solution to the Burgers’-Hopf equation for a sinusoidal driving pressure (4), derived
by transforming the nonlinear equation into a linear diffusion equation via the Hopf-Cole
transformation, is given by

p = −
4P

κ

∑
∞

n=1 n (−1)n In (Γ/2) e−n2rs/Γ sin (ωnt′)

I0 (Γ/2) + 2
∑

∞

n=1 (−1)n In (Γ/2) e−n2rs/Γ cos (ωnt′)
(7)

where In is an nth-order modified Bessel functions of the first kind and Γ is the Gol’dberg number
which relates the importance of nonlinear effects against dissipative effects as

Γ =
2βP

Dρω
.

If Γ � 1 then the relative effects of nonlinearity are strong, if Γ < 1 the relative effects of
nonlinearity are weak.

Unlike the Fubini solution (5), for strong nonlinearity, i.e. Γ � 1, the solution converges
slowly but far from the shock, i.e. again say rs > 3, asymptotic analysis yields the more usable
formulation

p =
2P

Γ

∞∑
n=1

sin (ωnt′)

sinh (n (1 + rs) /Γ)
(8)

called the Fay solution. The Fay solution can be expressed as the periodic function

p =
P

1 + rs

(
−ωt′ + π tanh

(
πΓωt′

2 (1 + rs)

))
− π ≤ ωt′ ≤ π.

In the lossless limit as viscosity vanishes, that is as Γ → ∞, the Fay solution recovers the Fourier
expression for a sawtooth function (6). The Fubini (5) and Fay (8) solutions may at first seem
incompatible but each holds in a different region of the flow; the Fubini solution close to the
source as a shock begins to form and the Fay solution far from the source as a shock begins to
decay. Blackstock [14] shows that the true solution to the lossless Burgers equation over the entire
domain is simply the sum of the two solutions (5) and (6). In the near-field the Fubini solution is
dominant, in the far-field the sawtooth solution is dominant. In [15] exact solutions of Burgers’
equation from the Cole-Hopf transformation were computed numerically and contrasted against
the analytical solutions and showed good agreement between the sets of solutions unless in the
immediate neighbourhood of the shock. The formation of a shock will occur in a region of peak
negative pressure and hence is a prime site for the nucleation of cavities. Thus the forthcoming
analysis will be performed either before a shock or significantly after, so that only the effect of
nonlinear wave propagation on pre-existing cavities is studied.

Figure 1 presents nonlinear wave profiles (5) and a linear wave profile (4) illustrating the
distortion due to nonlinear propagation of waves with equal amplitude. Throughout this paper
comparisons between linear and nonlinear waves of equal amplitude are studied.
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Figure 1. Profiles of incident waves for linear and nonlinear wave propagation as the distance
from a shock front decreases. The nonlinear waves are modeled by the first twenty terms of
the (normalised) Fubini solution. The linear wave is modelled when r = 0 (red,solid), nonlinear
waves are rs = 1/5 (blue, dashed), rs = 2/5 (blue, dot-dashed), rs = 3/5 (blue, short-dashed)
and rs = 4/5 (blue, dot).

3. Rayleigh-Plesset Equation

The Rayleigh-Plesset equation is an ordinary differential equation which models the oscillations
of a spherical bubble of radius R = R (t) whose centre is stationary. The Rayleigh-Plesset
equation can be derived by balancing the energy supplied to the bubble by the incident pressure
and the surrounding fluid and the kinetic energy of the bubble oscillations [16] yielding

ρ

(
RR̈ +

3

2
Ṙ2

)
= pg (R) + pv − p∞ + p (t) +

2σ

R
+

4μṘ

R
(9)

where pg is the internal pressure of the gas in the bubble given by the hard-core van der Waals
relationship

pg (R (t)) =

(
p∞ − pv +

2σ

R0

) (
R3

0 − a3

R (t)3 − a3

)κ

(10)

with R0 the equilibrium radius, a the van der Waals hard-core radius, pv the vapour pressure,
p∞ is the ambient pressure, σ is the surface tension and μ viscosity. The gas is assumed to be
ideal as the internal pressure is a function of the bubble radius only. The forcing pressure will
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Figure 2. Contrasting profiles of inertial cavitation for linear (red, solid) and nonlinear (blue,
dashed) wave propagation modeled by the first ten terms of the Fubini solution. R0 = 0.6μm,
subject to a wave with frequency ω = 2π · 26kHz, amplitude of driving pressure P = 1.36atm,
normalised distance to the shock rs = 1/20 ambient pressure p∞ = 1atm, surface
tension σ = 0.073kgm−2, viscosity μ = 10−3kgm−1s−1, density ρ = 1000kgm−3, polytropic
exponent κ = 5/3 and hard-core radius a = R0/8.85.

take the form

p (t) =

∞∑
n=1

Pn sin (ωn (t + t0))

where Pn are the Fourier terms of a solution to a Burgers’ equation, such as those given by the
Fubini (5) or the Fay (8) solutions.

Figure 2 contrasts the effects of nonlinear and linear wave propagation. It is clear that for
nonlinear wave propagation inertial cavitation occurs before and at a smaller maximum radius
than for linearly propagated waves. This has two significant effects, firstly as the collapse occurs
at a small maximum radius there is a diminished chance of shape instability [17] and secondly,
as the collapse occurs earlier more after-bounces can occur so that the bubble returns to a stable
initial radius before the next cycle begins. Note that the period of the after-bounces is the same
for the nonlinear and linear wave since the after-bounces occur at the natural frequency of the
Rayleigh-Plesset equation which is independent of the applied pressure.

4. Mel’nikov Analysis

Considering an unforced bubble and let R (t) = R0 (1 + x). When x � 1 then to first order the
nondimensional Rayleigh-Plesset equation yields the simple harmonic equation

ẍ + ω0x = 0 where ω2
0 =

1

ρ

(
3κ (p∞ − pv) R0

R3
0 − a3

+ 2σ

(
3κ

R3
0 − a3

−
1

R3
0

))
. (11)

The natural frequency ω0 is used to nondimensionalise time by τ = ω0t so that the new time-like
variable will be a function of the perturbation parameter. Note that when a = 0 and κ = 1 then
the frequency given by Harkin [11, Eq. (12)] is recovered. In this section Harkin’s analysis is

Anglo–French Physical Acoustics Conference 2009 IOP Publishing
Journal of Physics: Conference Series 195 (2009) 012008 doi:10.1088/1742-6596/195/1/012008

6



followed as it gives an analytical expression for the transverse intersections which allows for
direct comparison between linear and nonlinear wave propagation.

The static Blake threshold pressure is the point at which the internal pressure pv + pg is
equal to the external pressure pl + 2σ/R, thus for internal pressures larger than this threshold
unbounded growth will occur. The equilibrium pressure exerted on the bubble surface by the
liquid, pl, is given by

pl = pg + pv −
2σ

R
. (12)

Now perturb the equilibrium radius by R (t) = R0 (1 + εx (τ)) with ε a small parameter given
by

ε = 2 (1 − R0/Rc)

where Rc = Rc

(
G̃, σ, κ, a

)
is the Blake critical radius, found as the stationary solutions to the

unforced Rayleigh-Plesset equation

3κG̃R4

(R3 − a3)(κ+1)
= 2σ where G̃ =

(
p∞ − pv +

2σ

R0

) (
R3

0 − a3
)κ

. (13)

Unfortunately if a 	= 0 then there is no simple analytical expression for the critical Blake radius.
In the isothermal case the critical radius can be found explicitly as the solution to the cubic
equation

R3 −

√
3G̃

2σ
R2 − a3 = 0.

It is straightforward to show from the discriminant of the cubic equation when a ≥ 0 and G̃ ≥ 0
that the equation will have one real solution and a pair of ignorable complex conjugate solutions.
In the case of no hard-core radius, i.e. a = 0, then

Rc =
3κ−1

√
3κG̃

2σ
(14)

so that the critical value for the liquid pressure (12) is then

pc = pv −
3κ−1

√
(2σ)3κ

3κG̃

(
1 −

1

3κ

)
. (15)

On combining (14) and (15) the Blake critical radius is then given in the familiar form by

Rc =
2σ

(pv − pc)

(
1 −

1

3κ

)
. (16)

Note that

p∞ − pv =
2σ

3R0

(
Rc

R0

)2

−
2σ

R0

=
2σ

3κR0

(
1 − 3κ + ε +

1

2

3κ

3κ − 1
ε2 + O

(
ε3

))
, (17)

and similarly

pc − pv =
2σ (3κ − 1)

3κR0

(
1 −

ε

2

)−1
(18)
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so the critical pressure pc and the ambient pressure p∞ in general differ by terms O (ε) but
when isothermal O

(
ε2

)
. Thus when the equilibrium radius is close to the critical radius and the

ambient pressure is close to the critical pressure, the natural frequency can be expressed as

ω2
0 =

2σε (3κ − 1)

ρR3
0

. (19)

When the perturbation is applied to the Rayleigh-Plesset equation (9) in this regime both
the O (1) and O (ε) terms are zero if and only if the system is isothermal, i.e. κ = 1. Thus, when
isothermal to O

(
ε2

)
the governing equation is a Helmholtz oscillator

ẍ + 2ζẋ + x (1 − x) =

N∑
n=1

An sin (Ωn (τ + τ0)) , (20)

where the overdot represents the derivative with respect to the nondimensional time τ and

ζ = μ

√
2

εσρR0
, An =

PnR0

2σε2
and Ωn = ωn

√
ρR3

0

2σε

are constant terms of O (1) when ε is small for bubbles whose initial radius is of order microns
driven by frequencies in the megahertz range [11]. Here ζ is the nondimensional damping, Ωn

are harmonics of the nondimensional frequency, An the nondimensional Fourier components of
the applied pressure and τ0 is the phase of the incident wave. Note that the series expansion is
truncated to N terms in order to disregard terms which are greater than O

(
ε2

)
.

When forcing and viscosity are rescaled as small parameters, ζ �→ εζ and f �→ εf , which both
destroy the integrable Hamiltonian structure then the Mel’nikov integral can be calculated. Let
the ε-perturbed system be given by ẋ = f0 (x) + εf1 (x, τ) with x = (x, y)T = (x, ẋ)T and f1

an Ω-periodic function. Explicitly the vector field is given by

ẋ = y,

ẏ = x (x − 1) + ε

(
N∑

n=1

An sin (Ωnτ) − 2ζy

)
.

The unperturbed system, ε = 0, admits a homoclinic orbit γ emanating from the saddle at (1, 0)
of the form

γ (τ) =
1

2

(
tanh2

(τ

2

)
− 1, 3 tanh

(τ

2

)
sech2

(τ

2

))
.

The first order Mel’nikov integral at the homoclinic energy level h can simply be calculated
using Cauchy’s residue theory as

M (τ0) =

∫ +∞

−∞

f0 (x) ∧ f1 (x, τ + τ0) dτ

= 6π
∞∑

n=1

AnΩ2
n

sinh (Ωnπ)
cos (Ωnτ0) −

12ζ

5
. (21)

Due to the summation, it is not possible to formulate an explicit condition for simple zeros, but
instead perform a calculation numerically. For both the Fubini and the Fay solutions it is simple
to show numerically that the Mel’nikov integral has simple zeroes for larger An than in the case
of linear wave propagation.
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For the Fubini solution as rs → 0 the linear result is recovered and no summation is required,
that is as rs → 0 so P1 → P , Pj → 0 for all j = 2, 3, . . .. As the distance towards the shock
decreases, i.e. rs increases from zero, so a higher P or larger R0 is necessary in order for the
Mel’nikov integral to have simple zeroes.

For the Fay solution higher pressures are required further from the shock. Also, higher
pressures are required for materials with low Gol’dberg numbers than for materials with high
Gol’dberg numbers.

A Poincaré section can be constructed which is topologically conjugate to a Bernoulli shift
map on two symbols so that the likelihood of, say, Rmax being greater or smaller than the previous
cycle is as random as the toss of a coin. Thus, for sufficiently small ε, chaotic bubble oscillations
will occur in the vicinity of γ. From the simplified normal form, the effect of nonlinear wave
propagation implies that a cascade to chaos and unbounded bubble growth will occur at higher
driving pressures P or larger initial radii R0 than for linear wave propagation. As Ω → ∞ then
M → 12ζ/5 and higher order contributions vanish, so that the stable and unstable manifolds
stay disjoint. However, as Ω → 0 then M → 12ζ/5, but now second order terms will affect the
threshold criteria [18]. Indeed, numerical analysis suggests that higher order contributions must
be taken into account in this regime. Furthermore, the authors [18] state that higher-order
Mel’nikov analysis, i.e. a second aproximation of the separation distance between the stable and
unstable manifolds is always necessary when considering nonlinear wave propagation due to the
interactions of the differing harmonic excitations. Note that the classical first order Mel’nikov
integral will typically overestimate the threshold by not including higher order contributions.

It is simple to show that in the absence of (nondimensional) viscous damping, i.e. ζ = 0, that
generically the Mel’nikov integral will have simple zeros for all (non-zero) parameter values. The
effect of viscosity actually reduces the likelihood of violent cavitation, a result also found by
Szeri [10]. No such analysis has yet been performed in the visco-elastic case but it is currently
under investigation.

The bifurcation diagrams presented in figures 3 and 4 were computed for the Rayleigh-Plesset
equation (9) with an adaptive, explicit Runge-Kutta method of order (8, 5) with error control
due to Dormand and Prince [19]. In order to ignore transient behaviour the first fifty cycles
were disregarded and the next fifty cycles plotted. Figure 3 generalises the inferences from the
radius-time profiles displayed in figure 2. Subfigure 3(a) illustrates that the maximum amplitude
of the bubbles under forcing from nonlinear wave propagation is smaller than the maximum
amplitude of bubbles under forcing from linear wave propagation. By defining ξ as the phase of
the minimum radius Rmin = R (tmin) per acoustic cycle [13]

ξ = (tmin − t) /Ω

subfigure 3(b) illustrates that inertial cavitation occurs earlier in each acoustic cycle for nonlinear
waves than for linear waves. Both bifurcation diagrams in figure 3 show the same regions of
developing instability for linear waves (illustrated by the dotted lines) as both solution measures
determine Poincaré sections tangential to the motion of the cavity, i.e. when Ṙ = 0.

Figure 4 shows a bifurcation diagram beyond the critical threshold and figure 5 then
shows a selection of associated radius-time profiles illustrating the cascade to chaos through
a period doubling bifurcation. Subfigure 5(a) shows a stable one-period radius-time profile
at P = 1.30atm, which undergoes a period doubling bifurcation so that at P = 1.35atm in
subfigure 5(b) the profile is two-periodic. For P = 1.375atm as subfigure 5(c) illustrates the
radius-time profile is four-periodic. By P = 1.40atm the pressure has passed an accumulation
point of period doubling bifurcations and as subfigure 5(d) illustrates the bubble oscillations
are chaotic. Note that the pressure intervals between periodic cycles decreases as the system
approaches chaotic oscillations, characteristic of the cascade to chaos. From a clinical perspective,
when the duty cycle maybe in the order of seconds rather than micro seconds, accurate
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predictions for the heat deposition on tumour sites over all but the shortest time scales can
not be inferred from cavitation activity when the driving pressure is beyond the threshold.

Bifurcation diagrams of linear, see for example [13, figure 5], and nonlinear wave propagation,
such as in figure 4, at equal driving pressures far beyond the threshold are significantly different,
with differing regions of stability, indicating that beyond the threshold predictions based on
inaccurate wave propagation models will be inaccurate for all but the shortest time.

5. Conclusion

In this paper the effect of nonlinear wave propagation of high intensity focused ultrasound
on the stability of cavitating bubbles has been investigated numerically and analytically. The
effect of nonlinear wave propagation redistributes energy from the primary harmonic to higher
harmonics. From this two significant conclusions can be drawn; firstly the maximum bubble
radius is reduced. This is clearly illustrated by the bifurcation diagram in subfigure 3(a). Thus
the likelihood of shape instability is reduced. Secondly, inertial cavitation occurs earlier in each
cycle, as illustrated by the bifurcation diagram in subfigure 3(b). The earlier onset of collapse
allows for the bubble to return to an equilibrium radius and for inertial cavitation to reoccur.

Amongst the many threshold criteria applied to cavitation, it is worthwhile emphasising that
although the Mel’nikov criteria does not exactly correspond to the escape boundary whereby
bubbles increase without bound, it initiates the penetration of escaping tongues into the safe
basin and therefore constitutes the first event in a well known sequence of complicated events
which leads to unbounded bubble growth [20]. Thus the Mel’nikov criteria provides a lower
bound threshold value. In the context of therapeutic applications, where safety is paramount,
such a criterion is of great value.

In therapeutic applications a cloud of bubbles, comprised of many thousands of bubbles of
differing equilibrium radii and resonance frequencies will be present, rather than a single, isolated
bubble. Thus it could be assumed that a stability criterion for a single bubble is of limited use.
However, the stability of a single bubble does provide insight into the stability of entire bubble
clouds: experimental evidence [21] suggests that entire bubble clouds undergo period doubling
cascade to chaos, not just the subset of bubbles which satisfy the Mel’nikov criterion. It is
believed that the interaction between the bubbles results in an averaged behaviour. Indeed,
numerical and experimental of the dimension of the attractor in phase space are remarkably
low, between 2 and 2.5, indicating that the number of relevant degrees of freedom in the system
is also low [22,23].

In many applications of therapeutic ultrasound the tissue will have distributed
inhomogeneities, leading to dissipation through diffraction, but it is conjectured that material
nonlinearity is of greater significance than material inhomogeneity [24], although this subject is
currently under investigation.
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Figure 3. Bifurcation diagrams for a bubble determined by the Rayleigh-Plesset equation (9)
with parameters given in figure 2 but with initial radius R0 = 0.9μm. In both subfigures data
from the fifty cycles is omitted in order to disregard transient behaviour. The radii from linear
wave propagation are shown as red crosses, those from nonlinear wave propagation shown in
blue dots. Subfigure 3(a) shows the change in the maximum amplitude, whereas subfigure 3(b)
shows the change in the phase of the collapse, but the same qualitative features are displayed,
that is period doubling bifurcations occur for lower pressures for linear waves than nonlinear
waves.
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Figure 4. Bifurcation diagram showing the period doubling and the onset of quasi-periodic
oscillations as the magnitude of the forcing pressure of the Fubini solution (5) is varied for
the Rayleigh-Plesset equation (9). The parameters are the same as figure 3 except that now
R0 = 1.4μm. Profiles of the radius time curves at the marked pressures are illustrated in figure 5.
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Figure 5. Period-doubling cascade to chaos as illustrated by the four subfigures marked
on the bifurcation diagram 4. Subfigure 5(a) shows a stable one-period radius-time profile
at P = 1.30atm, which undergoes a period doubling bifurcation so that at P = 1.35atm in
subfigure 5(b) the profile is two-period. For P = 1.375atm as subfigure 5(c) is four period before
subfigure 5(d) shows a chaotic profile at P = 1.40atm.

Anglo–French Physical Acoustics Conference 2009 IOP Publishing
Journal of Physics: Conference Series 195 (2009) 012008 doi:10.1088/1742-6596/195/1/012008

13


