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Abstract
The equilibrium equations for the isotropic Kirchhoff rod are known to form
an integrable system. It is also known that the effects of extensibility and
shearability of the rod do not break the integrable structure. Nor, as we have
shown in a previous paper does the effect of a magnetic field on a conducting
rod. Here we show, by means of Mel’nikov analysis, that, interestingly, the
combined effects do destroy integrability; that is, the governing equations for an
extensible current-carrying rod in a uniform magnetic field are nonintegrable.
This result has implications for possible configurations of electrodynamic space
tethers and may be relevant for electromechanical devices.

PACS numbers: 46.25.Hf, 02.30.Ik, 05.45.Ac
Mathematics Subject Classification: 74K10, 78A30, 74H65

1. Introduction

The geometrically exact static equilibrium equations for a uniform symmetric (i.e., transversely
isotropic) elastic rod are well known to be completely integrable [1]. In fact, there is a close
relationship between these equations and those describing the dynamics of spinning tops. It
is also known that some perturbations of the rod equations are integrable, but that others
are not. For instance, anisotropy of the cross-section [2] and intrinsic curvature [3] destroy
integrability, as does the effect of gravity [4], but extensibility and shearability [5] do not, nor
does the effect of an external force due to a uniform magnetic field [6].

In this paper, we show by means of a perturbation analysis that although extensibility
and magnetic field individually do not destroy integrability, their combined effect does. The
results may be relevant for the study of (localized) spatial configurations of electrodynamic
space tethers, i.e., conducting cables that exploit the earth’s magnetic field to generate thrust
and drag (Lorentz) forces for manoeuvring [7, 8].
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The perturbation theory we use is the Hamiltonian version of Mel’nikov theory as
developed by Holmes and Marsden [9]. This theory considers the break-up of a homoclinic
orbit of the unperturbed integrable system by detecting transverse intersections of stable and
unstable manifolds of a perturbed saddle-type solution. Specifically, the so-called Mel’nikov
integral measures the distance between stable and unstable manifolds. Simple zeroes of this
integral correspond to transverse intersections which imply complicated horseshoe dynamics
and hence nonintegrability.

From standard results of dynamical systems theory one would also generically expect in
this situation the existence of a multiplicity of multipulse homoclinic orbits [10], corresponding
to arbitrary many localized solutions of the rod, and we show numerically that this is indeed
the case.

Mel’nikov analyses have been applied before to prove nonintegrability of anisotropic rods
[2], intrinsically curved rods [11] and heavy rods [4]. The first two of these studies employed
a formulation in terms of Deprit–Andoyer variables. Here we use a formulation in terms of
the more common Euler angles. Multimodal configurations for anisotropic and intrinsically
curved rods have been investigated numerically in [12, 13] and [3], respectively.

To apply perturbation theory in the case that two effects are simultaneously present one
has to make assumptions on the relative scale of the two effects. Since Mel’nikov analysis
requires closed-form expressions for the homoclinic orbit and these expressions are more
readily obtained for the extensible rod than for the magnetic rod, the Mel’nikov theory is
applied with the magnetic field as a perturbation of the extensible rod. However, we present
numerical evidence, in the form of chaotic Poincaré sections, that suggests that integrability
is also broken in the opposite scaling, i.e., if extensibility is viewed as a perturbation of the
magnetic rod.

The structure of the paper is as follows. In section 2, the governing equations are presented
as a non-canonical Hamiltonian system. In section 3, Hamiltonian Mel’nikov theory is briefly
reviewed. In section 4, the system of equations is reduced to a canonical system by using the
Casimirs of the Poisson bracket. In section 5, the homoclinic orbits of the unperturbed system
are calculated, after which the Mel’nikov analysis is performed in section 6. Multimodal
homoclinic orbits and fractal Poincaré plots, the signatures of spatial chaos, are computed in
section 7. In section 8, this chaotic behaviour is shown to persist in regions of the parameter
space well away from the asymptotic region where the Mel’nikov result is valid. A few further
remarks close this study.

2. The Cosserat theory of elastic rods

2.1. Kinematic equations

In Cosserat theory a rod is characterized by a space curve r (s), describing the centreline
of the rod, and an attached right-handed orthonormal triad of directors {d1(s),d2(s),d3(s)},
describing the varying orientation of the cross-section [14]. Here s is an arbitrary parameter.

On introducing a right-handed orthonormal frame {e1,e2,e3} fixed in space we can write

di = Rei , (2.1)

where R is a rotation matrix, i.e., an element of the Lie group SO(3). It is convenient to
introduce the ‘hat map’ isomorphism of the corresponding Lie algebra so (3):

R
3 −→ so (3) : a = (a1, a2, a3) �→ â =

⎛
⎝ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎞
⎠ , (2.2)
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so that âb = a × b. Differentiating (2.1) then gives

d′
i = R′ei = R′RT di =: ûdi = u × di , (2.3)

where the prime denotes differentiation with respect to s and u is the vector of generalized
strains associated with bending and twisting. The body components ui = u · di are the
curvatures (i = 1, 2) and the twist (i = 3) of the rod, for which, from (2.3), we can write

ui = 1
2εijkd

′
j · dk. (2.4)

The second vector of strains v is given by

r′ = v. (2.5)

The body components v1 = v · d1, v2 = v · d2 and v3 = v · d3 are the strains associated with
stretching and shear. For an unshearable rod we have v1 = 0 = v2. For an inextensible rod
we have |r′| = 1. The strain v3 actually represents the ratio of deformed to reference volume.
Since a real rod cannot be compressed to a point, it is natural to impose the condition v3 > 0.
For an inextensible and unshearable rod the centreline equation (2.5) becomes

r′ = d3 (2.6)

and the parameter s can be interpreted as the arclength of the rod.
It will be convenient in the following sections to express components of vectors

with respect to the director (or body) frame; for any vector p the triple of components
(p · d1,p · d2,p · d3) will be denoted by the sans-serif symbol p.

2.2. Constitutive relations

We assume the rod to be hyperelastic, i.e., we assume that there is a strain energy density
function W = W (u − u0, v − v0, s) such that the components of the force n = (n1, n2, n3)

and moment m = (m1,m2,m3) in the body are given by

mi = ∂W
∂ui

and ni = ∂W
∂vi

. (2.7)

Here u0 and v0 describe the configuration of the unstressed rod.
We will consider the important special case, often called linearly elastic, where the strain

energy is quadratic in the strains:

W(u, v) = 1
2B1u

2
1 + 1

2B2u
2
2 + 1

2Cu2
3 + 1

2Hv2
1 + 1

2Jv2
2 + 1

2K(v3 − 1)2, (2.8)

where B1 and B2 are the principal bending stiffnesses about d1 and d2, respectively, and C is
the torsional stiffness about d3. The constants H and J are the transverse shear stiffnesses and
K is the axial stiffness. In the case of an isotropic rod, B1 = B2 =: B and H = J .

2.3. Equilibrium equations

The equilibrium equations for the internal force n and moment m in an elastic rod are [14]

n′ + f = 0, (2.9)

m′ + r′ × n + l = 0, (2.10)

where we have allowed for external distributed loads f and l. The only distributed load we
shall consider is that due to a magnetic field, in which case f is given by the Lorentz force,
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while l = 0. Assuming the rod to be conducting and to carry a current I = Ir′ the Lorentz
force experienced when placed in a magnetic field B̄ is

f = I × B̄ = Ir′ × B̄. (2.11)

We assume both current and magnetic field to be uniform and align the e3 vector of the fixed
frame with the field, so that B̄ = B̄e3. Let λ = I B̄, then the equilibrium equations when
written in the director frame take the form of a non-canonical Hamiltonian system:⎛
⎝m

n
e3

⎞
⎠

′

= J (m, n, e3; λ) ∇H (m, n) with J = −J T =
⎛
⎝m̂ n̂ ê3

n̂ λê3 0
ê3 0 0

⎞
⎠ (2.12)

with Hamiltonian

H(m, n) = 1
2 m · u(m) + 1

2 n · (v(n) − d3) + d3 · n, (2.13)

where d3 = (0, 0, 1). In writing down this equation we have used (2.3), (2.5) and the hat
isomorphism (2.2). This formulation follows that of [6] but now allows for the effects of
extensibility and shearability. As in the inextensible/unshearable case, the Hamiltonian is the
same as that of the non-magnetic rod (cf [15]): the effect of the magnetic field is only present
in the structure matrix J .

By introducing the Poisson bracket

{f, g}(m,n,e3) = −m · (∇mf × ∇mg) − n · (∇mf × ∇ng + ∇nf × ∇mg)

− e3 · (∇mf × ∇e3g + ∇e3f × ∇mg)︸ ︷︷ ︸
evolution of field

− λe3 · (∇nf × ∇ng)︸ ︷︷ ︸
effect of field

, (2.14)

on (m, n, e3) the equilibrium equations can also be written as

m′ = {m,H}(m,n,e3)
= m × u + n × (d3 + v) , (2.15)

n′ = {n,H}(m,n,e3)
= n × u + λe3 × (d3 + v) , (2.16)

e′
3 = {e3,H}(m,n,e3)

= e3 × u. (2.17)

Note that the Poisson bracket is an extension of the usual Kirchhoff bracket by two terms. The
first is a semidirect term [16] describing the evolution of the magnetic field in the director frame
(this term does not affect the force and moment balance since the Hamiltonian is independent
of e3). The second is a cocycle known as a Leibniz extension [17] describing the effect of the
magnetic field on the conducting rod. Note that (2.17) is just the equation e′

3 = 0 written in
the director frame.

Note on notation: an ornamented gradient symbol is used for gradients with respect to the
indicated fields, while the unornamented symbol will always denote the gradient with respect
to all three fields (m, n, e3).

The non-canonical system (2.15)–(2.17) has three Casimirs, given by

C1 = 1
2 n · n + λm · e3, (2.18)

C2 = e3 · n, (2.19)

C3 = e3 · e3. (2.20)

The magnitude of force is not conserved if a magnetic field is present, but as a result of
rotational symmetry the force component in the direction of the field, C2, is conserved. C1

does not seem to have a physical interpretation. Naturally, C3 = 1.
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In the special case of inextensible/unshearable and isotropic rods two first integrals emerge

I1 = Bm · d3 (if J = H and B1 = B2 = B), (2.21)

I2 = n · m + Bλe3 · d3 (if 1J = 1H = 1K = 0 and B1 = B2 = B). (2.22)

As in the Kirchhoff case, the first of these expresses conservation of twist in the rod. The
second integral does not seem to have a physical interpretation, but in the limit λ → 0 it reduces
to the familiar conservation of torque about the loading axis. It is a straightforward task to
check that all the first integrals (2.13), (2.21) and (2.22) are independent and in involution
with respect to the Poisson bracket (2.14), and therefore the system is completely integrable.

Note that the twist integral I1 only requires isotropy, while the integral I2 requires isotropy
and inextensibility/unshearability. Indeed, it is the main purpose of this paper to show that the
combined effect of inextensibility/unshearability and magnetic field leads to nonintegrability.
For this we use Mel’nikov theory, which we review next.

3. Mel’nikov theory

For Hamiltonian systems Mel’nikov’s original perturbation analysis needs to be adapted. We
use the results for two-degrees-of-freedom systems presented in [2, 9].

Consider a Hamiltonian that depends on a small parameter ε in the form

H(q, p, ϕ, I ) = H0(q, p, I ) + εH1(q, p, ϕ, I ) + O(ε2), (3.1)

where (q, p) are conjugate variables and (I, ϕ) are action-angle variables such that H1 is
2π -periodic in ϕ. For ε = 0 ϕ is a cyclic variable (hence I is a first integral) and Hamilton’s
equations are completely integrable. We assume that the unperturbed Hamiltonian H0 satisfies
the following two conditions:

(i) For some I = I0 Hamilton’s equations corresponding to H0 possess a homoclinic orbit
(q̄ (t) , p̄ (t)) to a hyperbolic fixed point (q0, p0) at Hamiltonian level h = H0(q̄, p̄, I0).

(ii) The frequency

ω0 := ∂H0

∂I
(q̄, p̄, I0) (3.2)

of the unperturbed system satisfies |ω0| � ν > 0 for some ν ∈ R and ∀t ∈ (−∞, +∞).
This condition means that ϕ is a time-like variable and allows the unperturbed system to
be reduced to the (q, p) space with ϕ as the independent variable.

Now define the Mel’nikov function

M (ϕ0) =
∫ +∞

−∞

{
H0,

H1

ω0

}
(q,p)

dt, (3.3)

where the canonical Poisson bracket {f, g}(q,p) = ∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
is evaluated at the homoclinic

orbit and ϕ(t) = ∫ t

0 ω0(t̄) dt̄ + ϕ0. We then have the following result:

Theorem 3.1. For ε 	= 0 sufficiently small, if M (ϕ0) has simple zeroes ϕ̄0, that is,

M
(
ϕ̄0

) = 0 and
∂M
∂ϕ0

(ϕ̄0) 	= 0, (3.4)

then the stable and unstable manifolds of the perturbed hyperbolic invariant set (a periodic
solution in the four-dimensional system) intersect transversally. If, on the other hand, M (ϕ0)

is bounded away from zero, then the manifolds do not intersect.
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Proof of 3.1. See [2, 9, 18]. �

The existence of transverse homoclinic orbits implies that the ‘dynamics’ near the
hyperbolic saddle is ‘chaotic’ in the sense that the following holds:

Corollary 3.2. The Poincaré map associated with H on the homoclinic level set H−1(h) has
a hyperbolic, non-wandering Cantor set on which the map is conjugate to a Bernoulli shift of
finite type.

Proof of 3.2. See [2, 18]. �

This in turn implies

Corollary 3.3. The Hamiltonian H has no analytic conserved quantities independent of H
itself, i.e., the corresponding Hamiltonian system is nonintegrable.

Proof of 3.3. See [2]. �

4. Reduction of the magnetic rod equations to a canonical system

In this section, the three Casimirs (2.18)–(2.20) are used to reduce the nine-dimensional
non-canonical Hamiltonian system (2.15)–(2.17) in (m, n, e3) to a six-dimensional canonical
Hamiltonian system in terms of Euler angles and their canonical momenta (q, p) =
(θ, ψ, φ, pθ , pψ, pφ). The reduction follows [6] but now allows for extensibility and
shearability of the rod. The reduction in [6] was shown to be canonical on the condition
that the force n and magnetic field B̄ are not aligned. This result trivially extends to the
present case as the effects of inextensibility and shearability do not enter the structure matrix,
only the Hamiltonian.

Let

R =
⎛
⎝ cos θ cos φ cos ψ − sin φ sin ψ cos θ cos φ sin ψ + cos ψ sin φ − sin θ cos φ

− cos θ sin φ cos ψ − cos φ sin ψ − cos θ sin φ sin ψ + cos φ cos ψ sin θ sin φ

sin θ cos ψ sin θ sin ψ cos θ

⎞
⎠

be a parametrization of the rotation matrix R in (2.1) in terms of Euler angles. Here θ is the
angle the tangent to the rod makes with the magnetic field, ψ is the azimuthal angle about
the field direction and φ is the twist angle about the centreline of the rod. It follows that for
the triple e3 we have

e3 (q) = R (q) k = (−sin θ cos φ, sin θ sin φ, cos θ)T , (4.1)

where k = (0, 0, 1)T . On inserting the Euler angles into the strains (2.4) and (2.5) and using
the constitutive relations (2.7) the moments are found to be

m =
⎛
⎝m1

m2

m3

⎞
⎠ =

⎛
⎝B1(θ

′ sin φ − ψ ′ sin θ cos φ)

B2(θ
′ cos φ + ψ ′ sin θ sin φ)

C(φ′ + ψ ′ cos θ)

⎞
⎠ = Lp, (4.2)

where

L = 1

sin θ

⎛
⎝sin θ sin φ − cos φ cos θ cos φ

sin θ cos φ sin φ − cos θ sin φ

0 0 sin θ

⎞
⎠
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and the canonical momenta defined by pθ = ∂W(q, q ′)/∂θ ′, pψ = ∂W(q, q ′)/∂ψ ′,
pφ = ∂W(q, q ′)/∂φ′, with W(q, q ′) = W(u(q, q ′)) in terms of the strain energy function W
defined in (2.8).

For the force we can write n = R (q) w (q, p), for some non-constant triple w. By
decomposing w into parts perpendicular and parallel to k and using the Casimirs (2.18) and
(2.19) we obtain [6]

n = C2

⎛
⎝− sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠ +

√
2C1 − C2

2 − 2λpψ

⎛
⎝ cos θ cos φ cos ψ − sin φ sin ψ

− cos θ sin φ cos ψ − cos φ sin ψ

sin θ cos ψ

⎞
⎠ . (4.3)

It was shown in [6] that the transformation (4.1)–(4.3) is canonical provided that the force and
magnetic field (or e3) are not aligned, i.e.,

2C1 − C2
2 − 2λpψ 	= 0. (4.4)

(It was also shown that if (4.4) holds anywhere along the rod it holds everywhere, and in that
case all solutions are straight twisted rods, aligned with the magnetic field.) In the linearly
elastic case, the Hamiltonian (2.13) transforms into

H(θ, ψ, φ, pθ , pψ, pφ) = m2
1

2B1
+

m2
2

2B2
+

m2
3

2C
+

n2
1

2H
+

n2
2

2J
+

n2
3

2K
+ n3, (4.5)

with mi, ni given in terms of the canonical variables by (4.2) and (4.3). In the isotropic case
(B1 = B2 =: B, H = J ) the Hamiltonian reduces further to

H(θ, ψ, pθ , pψ, pφ) = 1

2B
p2

θ +
1

2B

(
pψ − pφ cos θ

sin θ

)2

+ C2 cos θ

(
C2

2

(
1

K
− 1

J

)
cos θ + 1

)

+

(
C2

(
1

K
− 1

J

)
cos θ + 1

)
sin θ cos ψ

√
2C1 − C2

2 − 2λpψ

+
1

2

(
1

K
− 1

J

)
sin2 θ cos2 ψ

(
2C1 − C2

2 − 2λpψ

) − λ

J
pψ, (4.6)

where we have dropped the p2
φ term, which is constant since φ is a cyclic variable: pφ =

m3 = I1/B. If, in addition, the rod is inextensible and unshearable (1/J = 1/H = 1/K = 0)
then Hamilton’s equations corresponding to (4.6) have I2 in (2.22) as a first integral, which in
canonical variables takes the form

I2 = λB cos θ + C2pψ −
√

2C1 − C2
2 − 2λpψ

(
pθ sin ψ − cos ψ

(
pφ − pψ cos θ

sin θ

))
, (4.7)

rendering the system completely integrable.
Finally, we use the constants C2 and m3 = I1/B = pφ to introduce dimensionless

quantities by setting

t = s
m3

B
, p̄θ = pθ

m3
, p̄ψ = pψ

m3
λ̄ = λm3

C2
2

, μ = 2C1 − C2
2

C2
2

, (4.8)

γ = C2

(
1

K
− 1

J

)
, δ = C2

J
, m = m3√

BC2
, (4.9)
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so that the dimensionless Hamiltonian H̄ = HB/m2
3 and integral Ī2 = I2/(C2m3) become

H̄
(
θ, ψ, p̄θ , p̄ψ

) = 1

2
p̄2

θ +
1

2

(
p̄ψ − cos θ

sin θ

)2

+
cos θ

m2
+

γ cos2 θ

2m2

+
1

m2
(γ cos θ + 1) sin θ cos ψ

√
μ − 2λ̄p̄ψ

+
γ

2m2
sin2 θ cos2 ψ(μ − 2λ̄p̄ψ) − δλ̄

m2
p̄ψ (4.10)

and

Ī2 = p̄ψ +
λ̄ cos θ

m2
−

√
μ − 2λ̄p̄ψ

(
p̄θ sin ψ − cos ψ

(
1 − p̄ψ cos θ

sin θ

))
. (4.11)

Remark 4.1. Ī2 is not only a first integral of the canonical equations generated by H̄ for
γ = δ = 0. It is also a first integral for the case λ̄ = 0. This is seen from the more familiar
form in (2.22) more readily than from the form in (4.11) obtained after going through the
reduction. In the absence of a magnetic field the parameter μ is artificial, the result of our
choice of e3.

Since it seems impossible to use the integral Ī2 to reduce the canonical system further to
a single-degree-of-freedom one, homoclinic orbits are not easily obtained in the general case.
However, in the non-magnetic case (λ̄ = 0) a further reduction is possible and homoclinic
orbits can be obtained explicitly. This is the topic of the following section.

5. Homoclinic solutions of the extensible rod in the zero magnetic field

In the absence of a magnetic field (λ̄ = 0) the force n is a constant vector, by (2.9). Provided
this vector is not zero, we can choose the fixed frame vector e3 in the direction of n (this gives
the usual physical meaning to the Euler angles θ , ψ , φ). According to (2.18) and (2.19) the
Casimirs satisfy 2C1 = C2

2 	= 0. Hence μ = 0 and the Hamiltonian (4.10) becomes

H̄(θ, p̄θ , p̄ψ) = 1

2
p̄2

θ +
1

2

(
p̄ψ − cos θ

sin θ

)2

+
cos θ

m2
+

γ cos2 θ

2m2
. (5.1)

We are interested in homoclinic orbits, so we assume the rod to be loaded by an end force
and end moment applied axially to the rod, which is aligned with e3 as t → ±∞. Thus n3 and
m3 are the end loads and we have pψ = n · m/C2 = I2/C2 = m3, hence p̄ψ = 1. Hamilton’s
equations corresponding to (5.1) in this case read

θ̇ = p̄θ and ˙̄pθ = − (1 − cos θ)2

sin3 θ
+

(γ cos θ + 1) sin θ

m2
, (5.2)

where we have used an overdot to denote differentiation with respect to t. This system of
equations agrees with that derived in [5] (see also the planar reduction in [19]).

The trivial fixed point θ = 0 of (5.2) corresponds to a straight twisted rod. Non-trivial
fixed points solve the cubic

(γ cos θ + 1)(1 + cos θ)2 = m2 (5.3)

and correspond to helical solutions. They exist for

0 < m2 < 4 (1 + γ ) , (5.4)

where the upper limit corresponds to the critical load mc = 2
√

1 + γ for torsional buckling
described by a pitchfork bifurcation [3].
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Figure 1. (a) and (b) Phase portraits of (5.5) for γ = 1, m = 1.7 < mc and m = 2.2 > mc ,
respectively. (c)–(e) θ , pθ and ψ̇ as a function of scaled arclength t for the homoclinic orbit of the
extensible (solid) and inextensible (dashed) rods at γ = 1, m = 1.7.

For parameters satisfying (5.4) the trivial fixed point is a hyperbolic saddle from which a
symmetric pair of homoclinic orbits emanates. To find these we integrate (5.2) once to obtain

1

2
θ̇2 + V (θ) = h, V (θ) = 1

2

1 − cos θ

1 + cos θ
+

cos θ

m2
+

γ

2m2
cos2 θ (5.5)

with h being the ‘energy’ level. The corresponding phase portrait is shown in figure 1(a)
(while figure 1(b) shows a typical phase portrait for m > mc). Setting u = cos θ and noting
that the energy of the homoclinic orbits is

h = 1

m2

(
1 +

γ

2

)
we can solve (5.5) for u̇ and integrate to get

t = m√
γ

∫ u(t)

u(0)

du

(1 − u)
√

g (u)
(5.6)

where

g (u) = u2 + 2u

(
1 +

1

γ

)
+ 1 +

2

γ
− m2

γ
. (5.7)

9



J. Phys. A: Math. Theor. 42 (2009) 375207 D Sinden and G H M van der Heijden

The quadratic g (u) has roots

u± = −
(

1 +
1

γ

)
± 1

γ

√
1 + γm2.

Substituting the upper and lower bounds for m in (5.4) into these roots gives

−
(

3 +
1

2γ

)
< u− < −

(
1 +

2

γ

)
and −1 < u+ < 1. (5.8)

Thus, the roots of g are always distinct, i.e., u− 	= u+. The integral (5.6) and the limits of
integration can be simplified as

t = m√
γ

∫ u(t)

u+

du

(1 − u)
√

(u − u−)(u − u+)
. (5.9)

The substitution u = u− + (u+ − u−)cosh2z turns the integral into

t = 2m

(1 − u−)
√

γ

∫ z(t)

0

dz

1 − k cosh2z
with k = u+ − u−

1 − u−
. (5.10)

Note that since u− < −1 and −1 < u+ < 1 we have that k > 1 for all parameter values. Thus
the integral (5.10) is never singular and may be solved by using the identity∫

dz

1 − k cosh2 z
= −2√

k2 − 1
tan−1

(√
k + 1

k − 1
tanh

z

2

)
. (5.11)

Hence, the homoclinic solutions are given by

cos θ = u− + (u+ − u−) cosh2

(
2 tanh−1

(√
k − 1

k + 1
tan

(
t (1 − u−)

√
γ (k2 − 1)

4m

)))
,

(5.12)

pθ = θ̇ . (5.13)

This solution agrees with that derived in [5, appendix], where it is expressed in terms of a
natural logarithm rather than hyperbolic functions. In the limit of small extensibility, i.e.,
γ → 0, (5.12) recovers the expression [20, equation (69)]:

θ = cos−1

(
u0 + (1 − u0) tanh2

(√
1 − u0

m
√

2
t

))
and pθ = θ̇ , (5.14)

where u+ → u0 = m2/2 − 1, u− → −∞ and k → 1 as γ → 0. Figures 1(c)–(e) compare
both homoclinic orbits.

The derivative of the angle ψ is given by

ψ̇ = 1

1 + cos θ
. (5.15)

Figures 1(c)–1(e) show plots of θ , pθ and ψ̇ , which we will need in the Mel’nikov analysis.

6. Mel’nikov theory applied to the magnetically perturbed extensible rod

In order to express the Hamiltonian (4.10) in the form (3.1) for use in the Mel’nikov analysis
we introduce a small parameter ε and write

μ = aε2 and λ̄ = bε2, (6.1)

10
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where a and b are positive and O (1) as are the other parameters m, γ and δ. Then the
Hamiltonian takes the form

H(θ, ψ, p̄θ , p̄ψ) = H0(θ, p̄θ , p̄ψ) + εH1(θ, ψ, p̄θ , p̄ψ) + O(ε2),

where the unperturbed Hamiltonian H0 is given by (5.1) and the first-order perturbation is
given by

H1(θ, ψ, p̄θ , p̄ψ) = 1

m2
(γ cos θ + 1) sin θ cos ψ

√
a − 2bp̄ψ .

For the frequency at the homoclinic orbit (5.12) we find

ω0 = ∂H0

∂p̄ψ

∣∣∣∣
hom

= 1

1 + cos θ
. (6.2)

Since θ in the homoclinic orbit is bounded away from π , this ω0 is well defined and bounded
away from zero. The two conditions (i) and (ii) in section 3 are therefore satisfied and
Mel’nikov theory can be applied.

The required partial derivatives are

∂H0

∂θ
= sin θ

(
1

(1 + cos θ)2 − (1 + γ cos θ)

m2

)
,

∂H0

∂p̄θ

= p̄θ ,

∂ω0

∂θ
= sin θ

(1 + cos θ)2 ,

∂ω0

∂p̄θ

= 0,

∂H1

∂θ
= 1

m2
(cos θ + γ cos 2θ) cos ψ

√
a − 2bp̄ψ,

∂H1

∂p̄θ

= 0.

On using (3.3) and the identity{
H0,

H1

ω0

}
(θ,p̄θ )

= 1

ω0
{H0,H1}(θ,p̄θ )

− H1

ω2
0

{H0, ω0}(θ,p̄θ )
, (6.3)

and writing ψ (t) = ψ̄ (t) + ψ0, with ψ̄ such that ψ̄(0) = 0, the Mel’nikov integral is found
to be

M(ψ0) = −√
a − 2b

m2
sin ψ0

∫ +∞

−∞
p̄θ sin ψ̄[(1 + cos θ)(cos θ + γ cos 2θ)

+ sin2 θ(1 + γ cos θ)] dt. (6.4)

Here we have dropped the cos ψ0 term which by symmetry does not contribute since θ is an
even function of t while p̄θ and ψ̄ are odd functions of t (cf Figure 1).

Generically the Mel’nikov integral will have simple zeroes provided a − 2b 	= 0. This
condition is no restriction as it corresponds to the non-alignment condition (4.4) which is
assumed throughout. There may be special parameter values for which the Mel’nikov integral
is zero. In these exceptional cases, the system will remain nonintegrable but the intersection
of the stable and unstable manifolds will be nontransverse.

A plot of the Mel’nikov integral (6.4) is shown in figure 2 for various values of γ

confirming the existence of simple zeroes. We note that for γ close to 1.8 the integral is
identically zero, indicating a nontransverse intersection of the stable and unstable manifolds.

11
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2

1

0

-1

-2

2π3π/2ππ/20

M
(ψ

0)
/√

a
−

2b

ψ0

Figure 2. Plots of the (normalized) Mel’nikov integral at m = 1.7 and γ = 1, 1.2, 1.4, 1.6, 1.8 and
2 (from top to bottom at ψ0 = π/2). The integral is identically zero for a value of γ somewhere
between 1.8 and 2.
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(c) λ̄ = 0.175
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(d) λ̄ = 0.186

Figure 3. Poincaré sections for sin ψ = 0 at energy level h = 0.9 for varying (small) values of λ̄.
(m = 1.7, μ = 0.4, γ = 3, δ = 3.)

7. Numerical results

By corollary (3.2) we expect the equations for the extensible magnetic rod to be chaotic, i.e.,
to contain a horseshoe (at least for small λ̄). To confirm this we present Poincaré sections in
figure 3. Each panel in the figure shows one orbit with starting values θ = 0.1, p̄θ = 0.5,

12
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Figure 4. Two-pulse (solid) and four-pulse (dashed) homoclinic solutions for small λ̄ and μ

(λ̄ = 0.001, μ = 0.002, m = 1.7, γ = 1, δ = 1).

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3

p θ−

θ
(a) γ = 0.15

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3

p θ−

θ
(b) γ = 0.205

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3

p θ−

θ
(c) γ = 0.208
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Figure 5. Poincaré sections for sin ψ = 0 at energy level h = 0.8 for varying (small) values of γ .
(m = 1.7, δ = 0.25, λ̄ = 2, μ = 4.)

ψ = 0 at fixed Hamiltonian level h = 0.9. Solutions were computed using the eighth-order
Dormand–Prince code DOP853 [21] with relative error tolerance set to 10−12 and intersections
were recorded with plane of section given by sin ψ = 0. Plots represent 10 000 Poincaré
iterates taking runs up to t = 84 000 in which the Hamiltonian was found to be preserved
to within 3.6 × 10−9. Clearly visible is the break-up of regular closed orbits into the typical
fractal sets of chaotic systems as λ̄ is varied.

Given the existence of a transverse homoclinic orbit in a chaotic system one expects from
standard results from dynamical system theory also the presence of higher-order (multipulse)
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Figure 6. Two-pulse (solid) and three-pulse (dashed) homoclinic solutions for small γ and δ

(γ = 0.01, δ = 0.01, m = 1.7, λ̄ = 0.5, μ = 1).

homoclinic orbits that correspond to solutions that pass near the saddle solution (and the
unperturbed homoclinic orbit) multiple times before closing up at the saddle [10]. This was
found to be the case for anisotropic rods in [13]. Multipulse homoclinic orbits for the magnetic
rod are displayed in figure 4. They were obtained by means of the shooting method discussed
in [13].

8. Discussion

We have shown that the equilibrium equations for an extensible and shearable conducting rod
in a uniform magnetic field are nonintegrable and exhibit chaotic solutions.

To prove nonintegrability of the system we used Mel’nikov’s method with the equations
scaled in such a way that the unperturbed rod is extensible/shearable but non-magnetic and the
magnetic effect forms the perturbation. This is necessary because the Hamiltonian system for a
(inextensible) magnetic rod, although integrable, cannot be explicitly reduced to a one-degree-
of-freedom system (at least not globally in terms of Euler angles) and therefore the required
explicit expressions of the homoclinic orbit are not available. It is reasonable to expect,
however, that integrability is broken more widely in parameter space, including regions of
small extensibility (γ � 1) and large magnetic field (λ̄ = O(1)). Figure 5 gives numerical
evidence for this in the form of chaotic Poincaré plots computed for different parameter values.
Each panel in the figure shows one orbit with starting values θ = 0.1, p̄θ = 1, ψ = 0 at
fixed Hamiltonian level h = 0.8. Plots represent 10 000 Poincaré iterates taking runs up
to t = 81 000 in which the Hamiltonian was found to be preserved to within 3.9 × 10−9.
Nonintegrability for these parameters is also confirmed by the multipulse homoclinic orbits
for small γ and δ shown in figure 6.

As the chaotic solutions correspond to spatially complex configurations of the rod, our
results may be relevant for electrodynamic space tethers [7, 8] and, at an entirely different
scale, for beams or ribbons as part of micro- or nanoelectromechanical devices such as
sensors, resonators, inductors and actuators [22]. For instance, there is significant interest in
nanosprings of small pitch because they allow for large magnetic flux densities [23].

For sufficiently slender elastic structures localized (i.e., homoclinic) solutions are the
preferred mode of deformation [20]. We have presented preliminary numerical results showing
that in addition to the transverse homoclinic orbit guaranteed to exist by Mel’nikov theory
there exist multipulse homoclinic solutions. It would be interesting to study the bifurcation
behaviour of these localized solutions as physical parameters are varied. We intend to take
this up in a future publication.
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