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The Buckling of Magneto-Strictive Cosserat Rods
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Summary. Magneto-striction is a property of ferromagnetic materials which causes them to change their shape or dimensions during
the process of magnetization. A conducting ferromagnetic rod in a magnetic field will experience a Lorentz body force andchange
size, coupling the effective material properties to the loading conditions. Homoclinic solutions, relating to localised post-buckled
configurations, and the post-buckling curves are computed,illustrating the influence of magnetostriction the buckling behaviour.

Introduction
The buckling of an elastic conducting body in a magnetic fieldis a classical problem, but recently has received atten-
tion as a model for electrodynamic space tethers, i.e., longconducting cables that exploit the Earth’s magnetic field to
generate thrust and drag forces for manoeuvring while de-orbiting. In this brief paper the effects of magnetostrictionare
investigated. Magnetostriction was first documented by Joule in 1842 [1] and today magnetostrictive materials play an
important in ultrasonic transducers, actuators and sensors [2]. The changes in volume associated with magnetostriction
may be a small fraction of the overall volume, but the consequences will be significant through the loss of integrability
and the consequent appearance of multi-modal localised configurations [3].

Magneto-Striction Cosserat Rods
The geometrically exact formulation of an isotropic conducting elastic rod under end force and moment and Lorentz body
force leads to the static force and moment balance equationscoupled to the direction of the magnetic field in the body
frame. The system is Hamiltonian, and in the absence of either the Lorentz force or extensibility, is completely integrable.
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For a complete derivation, and discussion of the symmetriesof the system, see [3]. The system has a periodic solution

p (t) = (0, 0, 1, 0, 0, 1, 0, 0, cos(t (1 + ν) /2) ,− sin (t (1 + ν) /2)) ,

corresponding to a straight but loaded rod. There are two non-dimensional loading parameters;λ the magnetic body force
andm the end force, and two nondimensional material parameters;γ the extensibility andν the torsional stiffness. As a
illustrative model of an magnetostrictive material, the dependence of the extensibility on the magnetic field is given by

γ (λ) = γ0 + α
(
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)2
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π2

4
(γ∞ − γ0) so that

dγ
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1 + β2λ2

whereγ0 is the extensibility in the absence of the magnetic field,γ∞ the saturation extensibility, andβ is related to the
derivative of extensibility. It is assumed that the material properties change instantaneously as the magnetic field strength
is increased. An example of the magneto-strictive realtionship is displayed in Fig 1.

Linear Analysis
Numerically computed non-trivial Floquet multiplier configurations of the periodic solution in the(λ, m) parameter plane
are shown in Fig. 2. Within the shaded region which terminates in a cusp, all multipliers lie on the unit circle.Outside
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Figure 1: Extensibility against magnetic field strength where
γ0 = 0 andα = 3/
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Figure 2: Spectrum of Floquet multipliers whenν = 1/3 for the
degrees of extensibility given in Fig. 1.
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Figure 3: Single and multi-modal solutions forλ = 0.05, m = 1.9, ν = 1/3 andγ (0.05) = 1/10.

this region there are a pair of multipliers inside, on and outside the unit circle. The boundaries of this region corresponds
to Hamiltonian-Hopf bifurcations in which two pairs of multipliers collide on the unit circle. At the cusp, where the
boundaries merge, the Hamiltonian-Hopf bifurcations merge in a Hamiltonian-Hopf-Hopf bifurcation. The location of
the cusp is primarily determined by saturation extensibility. For all rods withγ0 = 0, whenλ = 0 the rods buckle at the
classical Timoshenko valuem = 2. However, for rods with largeα andβ, i.e. those which quickly reach a saturation
value which is significantly different from the intrinic extensibility, the Timoshenko load may be a smooth local minima
and there will be an additional pair of buckling values.

Computation & Continuation of Post-Buckled Configurations
The post-buckled solutions were computed using a shooting method exploiting the reversibilities of the system. From the
linear analysis, a good initial guess was computed, placingthe initial condition on the two-dimensional linearised flow of
the unstable manifold near the saddle point. A variational problem was then solved for three shooting parametersδ, θ and
T , so that the solutions would intersect a three-dimensionalsymmetric section over the half rangeT

x (0) = p (0) + εδ (v1 sin θ + v2 cos θ) such that x1 (T ) = 0, x4 (T ) = 0 and x7 (T ) = 0.

The configurations were continued using the symmetric section to satisfy the right hand conditions and projection bound-
ary conditions to satisfy the left hand conditions. The solutions were projected onto the linearised centre and unstable
eigenspaces. The eigenspaces share a common direction, thus the system was over-determined. To resolve this the trun-
cation lengthT was allowed to vary with the principle bifurcation parameter. The end shortening,D, which measures the
change in computed length of the buckled rod from that of a straight rod was computed in order to qualitatively investigate
the behaviour of the system.
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Figure 4: Load-deflection curves for a primary orbit whenm = 2.05 with α = 3/
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Figure 5: Two codimension-two bifurcations
occuring whenm = 2, α = 0.17064 and
β = 337.2634.

Discussion
The post-buckling behaviour is determined by the change in material properties. As illustrated in Figs. 1 and 2, there are
essentailly two situations: when the change in material properties is weak or strong. In the case of weak change the post-
buckling behaviour is essentially determined by the cusp. For strongly magnetostrictive rods the post-buckling behaviour
is influenced by both the behaviour about the Timoshenko load, determined byγ0 and the cusp, determined byγ∞, as
illustrated by Fig 4(b). In the transition from weakly to strongly magnetostriction there are regimes in which an increase
in the body force, which typically lowers the buckling threshold, is matched by an increase in the extensibility, which
increases the buckling threshold. Fig 4(a) illustrates this phenomena: the load-deflection characteristics are approximately
stationary for a small range ofλ. As illustrated in Fig. by determining the value at which theTimoshenko point is a
codimension-two point, the location of the cusp can then be varied so that both codimension-two points exist. Note that
the load-deflection curve is significantly steeper about thecusp than the Timoshenko point.
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