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Summary. Magneto-striction is a property of ferromagnetic materiahich causes them to change their shape or dimensiongydurin
the process of magnetization. A conducting ferromagneiicin a magnetic field will experience a Lorentz body force ahdnge
size, coupling the effective material properties to theling conditions. Homoclinic solutions, relating to los&ld post-buckled
configurations, and the post-buckling curves are compiltestrating the influence of magnetostriction the bucglirehaviour.

Introduction

The buckling of an elastic conducting body in a magnetic fisld classical problem, but recently has received atten-
tion as a model for electrodynamic space tethers, i.e., tmmglucting cables that exploit the Earth’s magnetic field to
generate thrust and drag forces for manoeuvring while téhog. In this brief paper the effects of magnetostrictare
investigated. Magnetostriction was first documented byeJoul842 [1] and today magnetostrictive materials play an
important in ultrasonic transducers, actuators and serjghr The changes in volume associated with magnetostnicti
may be a small fraction of the overall volume, but the consagas will be significant through the loss of integrability
and the consequent appearance of multi-modal localisefibcwations [3].

Magneto-Striction Cosserat Rods

The geometrically exact formulation of an isotropic contthgrelastic rod under end force and moment and Lorentz body
force leads to the static force and moment balance equatmunsed to the direction of the magnetic field in the body
frame. The system is Hamiltonian, and in the absence ofrditled_orentz force or extensibility, is completely intelgie
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For a complete derivation, and discussion of the symmetfitse system, see [3]. The system has a periodic solution
p(t) =1(0,0,1,0,0,1,0,0,cos(t (1 +v) /2), —sin(t (1 +v) /2)),

corresponding to a straight but loaded rod. There are twedimrensional loading parametepsthe magnetic body force
andm the end force, and two nondimensional material parametdis extensibility and the torsional stiffness. As a
illustrative model of an magnetostrictive material, thpeledence of the extensibility on the magnetic field is given b
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where~ is the extensibility in the absence of the magnetic figld, the saturation extensibility, anelis related to the
derivative of extensibility. It is assumed that the matquraperties change instantaneously as the magnetic fieddgth
is increased. An example of the magneto-strictive readtigmis displayed in Fig 1.

Linear Analysis
Numerically computed non-trivial Floquet multiplier cogtfirations of the periodic solution in tti&, m) parameter plane
are shown in Fig. 2. Within the shaded region which termimatea cusp, all multipliers lie on the unit circle.Outside

0.16
042 e 22
=0.08 g e 2!
[ L/ 1.9
0.04 o L8l
0201 001 02 16

0.025 0 0.‘025 0.05 0.075 0.1

Figure 1: Extensibility against magnetic field strength mhe

Y0 = 0anda = 3/ (57°) with 8 = 13.6525 tan (7//6) (solid), Figure 2: Spectrum of Floquet multipliers when= 1/3 for the
8 = 20tan (W/\/é) (dot) andg8 = 100 tan (ﬁ/\/é) (dash). degrees of extensibility given in Fig. 1.
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Figure 3: Single and multi-modal solutions for= 0.05, m = 1.9, v = 1/3 and~ (0.05) = 1/10.

this region there are a pair of multipliers inside, on andmigt the unit circle. The boundaries of this region corresiso

to Hamiltonian-Hopf bifurcations in which two pairs of mipliers collide on the unit circle. At the cusp, where the
boundaries merge, the Hamiltonian-Hopf bifurcations reérga Hamiltonian-Hopf-Hopf bifurcation. The location of
the cusp is primarily determined by saturation extensihikror all rods withy, = 0, when\ = 0 the rods buckle at the
classical Timoshenko value = 2. However, for rods with larger and 3, i.e. those which quickly reach a saturation
value which is significantly different from the intrinic extsibility, the Timoshenko load may be a smooth local minima
and there will be an additional pair of buckling values.

Computation & Continuation of Post-Buckled Configurations

The post-buckled solutions were computed using a shootethad exploiting the reversibilities of the system. From th
linear analysis, a good initial guess was computed, plattiagnitial condition on the two-dimensional linearisediflof
the unstable manifold near the saddle point. A variationathlgm was then solved for three shooting parametetand
T, so that the solutions would intersect a three-dimensisyrametric section over the half range

x(0)=p(0)+ &b (v1sinf +wvacosf) suchthat 2, (7)=0, 24(7)=0 and z;(7)=0.

The configurations were continued using the symmetricaetti satisfy the right hand conditions and projection beund
ary conditions to satisfy the left hand conditions. The Bohs were projected onto the linearised centre and urestabl
eigenspaces. The eigenspaces share a common directisithéhsystem was over-determined. To resolve this the trun-
cation lengthZ was allowed to vary with the principle bifurcation paranefehe end shorteningy, which measures the
change in computed length of the buckled rod from that ofaigitt rod was computed in order to qualitatively investgat
the behaviour of the system.
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occuring whenm = 2, « = 0.17064 and

. . . . . = 337.2634.
Figure 4: Load-deflection curves for a primary orbit when= 2.05 with a = 3/(57%). p

Discussion

The post-buckling behaviour is determined by the changedtenal properties. As illustrated in Figs. 1 and 2, theee ar
essentailly two situations: when the change in materigbgrites is weak or strong. In the case of weak change the post-
buckling behaviour is essentially determined by the cusp skongly magnetostrictive rods the post-buckling béhav

is influenced by both the behaviour about the Timoshenko, Idatermined byy, and the cusp, determined by, as
illustrated by Fig 4(b). In the transition from weakly toatigly magnetostriction there are regimes in which an ire@ea
in the body force, which typically lowers the buckling thinetd, is matched by an increase in the extensibility, which
increases the buckling threshold. Fig 4(a) illustrates phienomena: the load-deflection characteristics are =ippaitely
stationary for a small range of. As illustrated in Fig. by determining the value at which ffimoshenko point is a
codimension-two point, the location of the cusp can thendreed so that both codimension-two points exist. Note that
the load-deflection curve is significantly steeper abouttisp than the Timoshenko point.
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