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Abstract. In this paper the effect of interaction on the expansion of a bubble

in a regular monodisperse cluster is investigated. By a geometric construction a

two-dimensional ordinary differential equation with an exact expression for first-order

bubble interactions is derived for an n-bubble model. An approximate equation is

derived for the rapid expansion of the bubble which can be solved yielding an analytic

expression for the collapse of a bubble which undergoes inertial cavitation. It is then

demonstrated that the maximum volume of a bubble in a cluster is considerably less

than that of a single bubble. This result is of significance as typically the dispersion

relationship, the wave speed and the co-efficient of attenuation are calculated using

a single bubble model and summed for the total number of bubbles to yield the void

fraction. Furthermore it is shown that the maximum radius of a bubble in the cluster

is considerably smaller than that of a single bubble, yet the duration of the collapse

phase is only weakly dependent on the number of bubbles. Hence, it is conjectured

that the likelihood of fragmentation due to Rayleigh–Taylor instability is reduced.

The results from the analysis are in good agreement with full numerical simulations of

multi-bubble dynamics, as well as experimental observations

1. Introduction

It has long been known that when bubbles interact with each other, their dynamics
are often significantly different from those of isolated bubbles, for example bubbles may
attract or repel one another [1] or their collapse phases may synchronize [2]. There is a
wide range of studies, both experimental [3, 4] and theoretical devoted to multi-bubble
dynamics, by direct numerical simulations of few-bubble systems [5–9] or averaged cloud
models [10–12].

There have been several studies, in which bubbly flows at nondilute, finite
void fraction were investigated through effective equations intended to capture wave
phenomena. There are essentially two approaches to the problem. The first approach was
pioneered by Foldy [13], who derived a dispersion relation by treating wave propagation
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in a bubbly mixture as a problem of multiple scattering by randomly distributed isotropic
scatterers representing the spherical bubbles.

Alternatively, van Wijngaarden [14] introduced volume-averaged quantities which
matched the microscopic conservation laws for each phase in order to remove the
local fluctuations due to scattering and then derived the averaged equations based on
heuristic, physical reasoning. Caflisch et al. [15, 16] rigorously extended the work of
van Wijngaarden and proved that the relative motion between the bubbles and the
liquid does not play a significant role, justifying the assumptions. Linear equations in the
limits of weak applied forcing and small void fraction recovered the results of Foldy, by
essentially replacing the complex distribution of gas bubbles and liquid with a continuous
effective medium. From these linear equations Commander and Prosperetti [17] derived
a dispersion relation.

Typically the dispersion relation and the co-efficient of attenuation are calculated
using a single bubble model and summed for the total number of bubbles. As
Leighton et al. [18] highlight, attenuation and wave speed are often measured in order to
infer bubble size distributions. However, the derivation of the attenuation and wave
speed are based on linear theory [17]. Thus accuracy in the measurement of the
bubble size distribution is implicitly limited by the underlying assumptions that the
bubbles must not collapse inertially, which is dependent on the bubble sizes. Ida [7]
computed radius-time curves in coupled polydisperse bubble systems and observed that
the maximum radius of smaller bubbles was reduced. This was attributed to the
expansion of a bubble being suppressed by the pressure waves which larger neighbouring
bubbles emit during their expansion.

The first estimations of the maximum radius of a single bubble were derived by
Apfel and Holland [19, 20]. In a heuristic manner, the authors assumed that initially
the bubble growth was linear, then dealt with the subsequent growth by equating the
potential and kinetic energy of the bubble. Löfstedt et al. [21] and Hilgenfeldt et al. [22]
demarcate the radius-time profile of a single bubble into distinct regions of expansion,
collapse and afterbounce. Within each regime the dominant effects on the bubble were
identified and reduced governing equations in each regime derived. In this paper, using
geometric arguments [23] to reduce a 2n-dimensional system of coupled interacting
Rayleigh–Plesset type equations to an exact two-dimensional modified Rayleigh–Plesset
equation, it will be demonstrated that for inertially collapsing bubbles the time-averaged
volume of an n-bubble cluster will be significantly less than that of n isolated bubbles.
Hence a more accurate approximation of a time-averaged void fraction may be derived.
This is significant as experiments have shown that for water-air mixtures void fractions
as low as 0.5% can lead to a drop in sound speed from 1500m/s to 160m/s, which is
actually lower than the sound speed in air [24]. The explanation is that the sound speed
depends on both the compressibility and the density of the medium. As the former
is determined by the density of gas bubbles and the latter by the properties of the
liquid, the resulting sound speed can vary drastically from that of either the liquid or
the gas [25].

With the assumption of local homogeneity, Rubinstein [26] extended the approach
derived in [15, 16] to a nonlinear analysis of periodic lattice multi-bubble system by
homogenisation and derived an modified Rayleigh–Plesset equation, which includes
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the effects of interactions. Beylich and Gülhan [27] used a correction factor for the
bubble-bubble interaction effect by fitting the result of a model equation to experimental
data for a bubbly shock flow. Kubota et al. [28] modelled the bubble-bubble interaction
around a hydrofoil by adding the velocity potential of other bubbles. As Seo et al. [29]
state most of the proposed models for the bubble-bubble interaction have not been
critically validated and the proposed correction factors for bubble-bubble interaction
vary dramatically, not only in magnitude but also in sign, from study to study. In [29]
the authors also used a locally averaged volume averaged Rayleigh–Plesset equation and
compared the results against direct numerical simulations using a front tracking method.
The effects of interaction became noticeable at void fractions 1% and became significant
beyond 10%. Reasonable agreement between averaged equations and direct numerical
simulation was found for void fractions up to 13%. Yasui et al. [30] investigated inertial
collapse within a bubble cloud and found that shock waves do not lead to broadband
noise if the bubbles are shape-stable, but broadband noise can be attributed to temporal
fluctuations in the number of bubbles within a cloud.

The outline of this paper is as follows, in section 2 the Rayleigh–Plesset equation
is introduced and in subsection 2.1 the reduced set of governing equations based on
geometrically exact constructions is presented. In section 3 an analytical expression
which approximates the expansion phase of a bubble in cluster is derived. Finally, in
section 4 the results are summarised and the implications discussed.

2. The Rayleigh–Plesset Equation

The Rayleigh–Plesset equation is an nonlinear ordinary differential equation which
models the oscillations of a single gas filled spherical bubble of radius R = R (t) whose
centre is stationary. The Rayleigh–Plesset equation can be derived by balancing the
energy supplied to the bubble by the incident pressure and the surrounding fluid to the
kinetic energy of the bubble oscillations [21].

The interaction between two bubbles, Ri and Rj , a distance Dij apart from their
centres, due the re-radiated pressure field is given by Mettin et al. [31]. It is derived
by matching the velocity field for an incompressible liquid with the pressure field using
the conservation of momentum. On computing the interaction to first-order, neglecting
terms of O (

1/D5
)
and O (1/cD), for n-bubbles the governing equation is given by the

2n-dimensional equation

ρ

⎛
⎜⎜⎝RiR̈i +

3

2
Ṙ2

i +
n∑

j=1,
j �=i

Rj

Dij

(
RjR̈j + 2Ṙ2

j

)⎞⎟⎟⎠ = pg (Ri) + pv − p∞ −
2σ

Ri

− 4μṘi

Ri

+ p (t) .

(1)

Here ρ is the density of the surrounding (irrotational, infinite, incompressible) liquid, pg
is the internal pressure of the gas in the bubble given by

pg (R) =

(
p∞ − pv +

2σ

R0

)(
R3

0 − a30
R3 (t)− a30

)κ

, (2)
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with p∞ is the hydrostatic pressure, pv is the vapour pressure, R0 = R (0) is the initial
bubble radius, σ is the surface tension, κ is the polytropic exponent of the gas within
the bubble, a is the hard-core van der Waals radius and μ is the shear viscosity of the
liquid. The gas is assumed to be ideal, thus the internal pressure is a function of the
bubble radius only, hence pv is constant. The applied acoustic pressure takes the form

p (t) = pa sin (ωt+ ϕ0) (3)

where pa is the magnitude of the pressure, ω is the driving frequency and ϕ0 is the phase
of the applied field. The internal conditions, such as vapour content and polytropic
index and external conditions, such as the fluid density, viscosity, surface tension and
ambient pressure are all assumed to be identical for each bubble.

In the derivation of the Rayleigh–Plesset equation it is assumed that the wavelength
of the sound field is large in comparison with the radius of the bubble and that the
motion of the bubble wall is slow in comparison with the speed of sound in the liquid
and the gas. Diffusive, thermal and chemical effects are all neglected. Discussions of the
underlying assumptions and limitations of the classical Rayleigh–Plesset equation are
given in [21, 22].

In the case of interacting bubbles some further assumptions are necessary. Firstly,
the fluid is assumed to be incompressible so that the interactions between bubbles are
instantaneous. Secondly, the distances between bubbles are assumed to be sufficiently
large so that the bubbles remain spherical [32]. For violently collapsing bubbles a
shock-like pressure wave may be released [33] containing small-amplitude high-frequency
components whose wavelengths may be of a comparable size to the bubbles. As the focus
of this paper is on the behaviour of interacting bubbles during expansion this situation
will not arise and so the assumptions underpinning the Rayleigh–Plesset equation are
still valid.

2.1. Geometric Averaging

Although it is possible to generalise the Rayleigh–Plesset equation (1) to an n-bubble
model, it is not possible to express the natural frequencies of the system analytically for
an arbitrary n-bubble model if n ≥ 5. However, if the system of n-interacting equally
sized bubbles forms a complete graph, i.e. are arranged in a regular polygon planar to
the incident wave, the Rayleigh–Plesset equation can be simplified by exploiting the
invariance of the dihedral symmetry group. The physical interpretation is that although
the distances between pairs of bubbles are different, and thus the magnitude of the
pressure waves due to interactions different, the sum of the distances between a bubble
and all of its neighbours will be the same for every bubble, as is illustrated in Fig. 1.
Thus the total incident pressure wave due to interaction will be the same for every
bubble. Hence the Rayleigh–Plesset equation can be generalised to incorporate the
multiple bubble interactions via

Rj �→ R and
n∑

j=1,
j �=i

Rj

Dij

(
RjR̈j + 2Ṙj

)
�→ αn

D
R

(
RR̈+ 2Ṙ2

)
(4)
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Figure 1: The interactions of a set of equally sized bubbles arranged in a heptagon (n = 7) form
a complete graph which can be decomposed into three star polygons which connect
with the first, second and third nearest neighbour. Each star polygon has a unique
length scale λi, i = 1, 2, 3. The total interaction force on a bubble is given a sum of
the length scales weighted by the total number of interactions per length scale.

where αn is a dimensionless weighting parameter for the interaction amongst the
n-bubbles and D is the distance between a bubble and its nearest neighbour. The
dimension of the governing equation is thus independent of the number of bubbles and
can be reduced from a 2n-dimensional system to a two-dimensional system. Hence, for
a single bubble α1 = 0 as there is no interaction, for a pair of bubbles α2 = 1, for three
bubbles arranged in an equilateral triangle α3 = 2, for a square array of bubbles

1

D
+

1

D
+

1√
2D

=
1

D

(
2 +

1√
2

)
⇒ α4 =

1 + 2
√
2√

2
(5)

and for a regular pentagon the sum of the internal lengths gives

1

D
+

1

D
+

1

D
(
1 +

√
5
)
/2

+
1

D
(
1 +

√
5
)
/2
⇒ α5 =

2
(
3 +

√
5
)

1 +
√
5

(6)

and so on. Fig. 1 illustrates the length scales of the heptagon, which is the first regular
polygon whose length scales can not all be expressed by real numbers.

Rather than by repeatedly applying trigonometric formulae for each regular array,
the procedure can be generalised by noting that the sum of all the interactions forms
a complete graph which can be decomposed into star polygons. The ith-star polygon
has an associated length scale, λi, based only on the total number of bubbles and the
minimum distance between any two bubbles. Each of the length-scales may be found
via the roots of Chebyshev polynomials [23]. The total interaction force on a bubble is
given by the sum of the length scales, λi, weighted by the total number of interactions
per length scale, which is denoted by φi. The parameter αn can expressed as

αn =
n∑

i=1

D

Di

− 1 =
n∑

i=1

φiλi − 1 (7)

where the subtraction is due to the fact that when n = 1 there will be no
interaction. When n = 2k + 1 the length scales λi are the n positive roots of the
polynomial un = un

(
1− λ2/2

)
where un (·) is an nth-order Chebyshev polynomial of the
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second kind. When n = 2k then λi are found as the positive roots of vn = vn
(
1− λ2/2

)
where vn = un + un−1. For the case of n = 2k + 1 equally sized bubbles there will
be 2k interactions so each length scale will be equally weighted as there will be two
interactions every length scale. However for n = 2k equally sized bubbles there will be
2k − 1 interactions, where, on the largest length scale, the bubble interacts with a single
bubble. The parameter φi is given by the following relation

if n =

⎧⎨
⎩

2k then φi = 2

2k + 1 then φi =

{
2 for i = 1, . . . , 2k
1 for i = 2k + 1.

Hence, for regular configurations, the dimension of the system is reduced to a
two-dimensional modified Rayleigh–Plesset equation of the form

ρ

(
RR̈ +

3

2
Ṙ2 +

αnR

D

(
RR̈ + 2Ṙ2

))
= pg (R) + pv − p∞ −

2σ

R
− 4μṘ

R
+ p (t) (8)

which, on linearisation, yields a single natural frequency, given by

ω0 =

√
1

ρ (1 +R0αn/D)

(
3κ (p∞ − pv)R0

R3
0 − a30

+ 2σ

(
3κ

R3
0 − a30

− 1

R3
0

))
. (9)

An increase in the number of bubbles increases αn and, therefore, reduces the natural
frequency of the system, in agreement with experimental observations [34]. However,
in the limit n→∞ the formulation is of limited applicability as the configuration
approaches a circle of infinite radius.

The averaging of the bubble interactions has previously been attempted by
Yasui et al. [4, 30] and Kubota et al. [28], who assumed the bubble cloud to be
monodisperse and made a “crude” approximation based on the averaging of the
geometric configuration of the bubble cloud for the coupling strength S

Rj �→ R and
n∑

j=1,
j �=i

Rj

Dij

(
RjR̈j + 2Ṙj

)
�→ SR

(
RR̈+ 2Ṙ2

)
,

where the coupling strength is approximated as

S = Si =
n−1∑
j=1

1

Dij

≈ 4nπ

∫ lmax

lmin

r dr ≈ 2nπl2max (10)

with lmin 	 lmax the distances to the nearest and furthest bubbles for a bubble
in the cluster. Yasui et al. estimated that the coupling strength could be of the
magnitude 106/m in the homogeneous bubble cloud found in ultrasonic cavitation at
large pressures, 2.9atm.

While the assumption of geometric regularity is somewhat unphysical, the primary
benefit of the assumptions is the reduction in the dimension of 2n-dimensional system
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to a two-dimensional system, allowing many analytical techniques from single bubble
theory to be carried over. However, numerical simulations on the two-dimensional
Rayleigh–Plesset equation (8) suggest that the geometric formulation is robust under
perturbation in that if the bubbles are arranged in a regular array and the location of
each bubble is perturbed slightly in the plane of the wave, each radius-time profile will be
perturbed form the radius-time profile of the bubbles regular array by a small amount.
However, whether the spatial perturbation is robust for consequent translational motion
under the primary Bjerknes force is not yet known.

If compressibility was incorporated in the Rayleigh–Plesset equation then delays
would be included in the bubble-bubble interaction but the system would still be
two-dimensional, where the delays would be given by τi = Di/c = αiD/c.

Although the likelihood of nucleation occuring in a regular array in an uncontrolled
environment is highly unlikely, nucleation in a regular array can be performed in a
controlled and repetable manner. Kroon et al. [35] induced cavitation using an array
of laser foci by shaping a pulsed laser beam using a digital hologram and focusing it
into a small volume of liquid. Bremond et al. [36] used a hydrophobic surface patterned
with micro-cavities as nucleation sites when the liquid pressure is lowered. In both
cases the authors showed that the dynamics of the clusters were in good agreement
with analytical models if the bubbles remained spherical. However, if the separation
distance was beyond the threshold derived by Zavtrak [32], the interaction would lead
to non-spherical collapse and jetting towards the centre of the arrays.

Figure 2 illustrates a radius-time profile for a one, two and three bubble clusters,
where density is given by ρ = 1000kg/m3, hydrostatic pressure p∞ − pv = 1atm, surface
tension σ = 0.073kg/m2, polytropic index κ = 5/3, van der Waals radius a = 8.85,
frequency ω = 2π · 27kHz and applied pressure pa = 1.36atm. The figure clearly shows
that the maximum radius decreases as the number of bubbles increases for a bubble in
the cluster.

3. Approximating the Expansion Phase

By geometric arguments, the dimension of the multi-bubble system is reduced from a
2n-dimensional system to a two-dimensional system and is thus far more amenable to
analysis. In this section an analytical estimate for the expansion phase of the bubble
is derived. As Fig. 2 illustrates, the expansion phase of a bubble will account for a
significant part of the time-averaged volume of a bubble. Thus an estimation of the
bubble radius during this phase has utility in predicting the attenuation for example.

During the expansion phase, the governing equation is dominated by the inertial
terms and the driving pressure. The expansion phase of a bubble is determined by the
time in which the applied acoustic pressure is negative. From Fig. 3 let

t− =
1

ω
sin−1

(
p∞ − pv

pa

)
and t+ + t− =

π

ω
(11)

so that (t−, t+) is the interval in which the total acoustic pressure on the bubble is
negative. Note that an inertially collapsing bubble may continue to expand when
the applied pressure field is positive due to its own momentum, before collapsing at
time tmin [37]. Thus, the inertial terms in the Rayleigh–Plesset equation, and the applied
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Figure 2: Radius-time profiles for a single bubble (red), two (green) and three (blue) bubbles

of initial radius R0 = 5μm with ρ = 1000kg/m3, p∞ − pv = 1atm, σ = 0.073kg/m2,
κ = 5/3, a = 8.85 under acoustic field with ω = 2π · 27kHz and pa = 1.36atm. Note
that the maximum amplitude decreases as the number of bubbles increases. The
radius-time profiles displayed are from the fifth acoustic cycle, so that transient
oscillations have passed.

acoustic pressure are the significant terms during the expansion and beginning of the
collapse phase.

The inertial terms may be written as

RR̈+
3

2
Ṙ2 =

3

4

d2

dt2
R2 − 1

2
RR̈ (12a)

or as

RR̈+
3

2
Ṙ2 =

1

2

d2

dt2
R2 +

1

2
Ṙ2. (12b)

Numerical simulations [22] show that, as observed in [19], in the interval t ∈ (t−, t+) the
velocity of the bubble is the dominant effect as the growth is almost linear. Whereas
in the interval t ∈ (t+, tmin], that is when the bubble reaches it maximum radius and
collapses, it is the acceleration of the bubble which is the dominant effect. Thus in the
two domains, the weaker contributions to the expansion can be neglected.

The complete effect of interaction can be included in both regimes by exploiting the
fact that the interaction is an exact second derivative, i.e.

αn

D
R

(
RR̈+ 2RṘ2

)
=

αn

3D

d2

dt2
R3. (13)
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Figure 3: Regimes in which expansion phase of bubble is modelled, showing the effective applied
acoustic wave and the times which determine the bubble expansion (11). In this
figure R0 = 3μm and pa = 1.36atm. In the radius-time profile, the numerical solution
on the domains (t−, t+) and (t−, tmin] are shown by the red dotted and red dashed
lines respectively.

Hence, following [22] and [38], the expansion phase can be formulated as

3ρ

4

d2

dt2

(
R2

(
1 +

4αn

9D
R

))
= pa sin (ωt)−A+O

(
RR̈

)
on (t−, t+) as Ṙ2 � RR̈

(14a)
and

ρ

2

d2

dt2

(
R2

(
1 +

2αn

3D
R

))
= pa sin (ωt)−A+O

(
Ṙ2

)
on (t+, tmin] as Ṙ2 	 RR̈

(14b)
where A is given by

A = p0 − 2σ

R0

1

K (p0, pa)
with p0 = p∞ − pv (15)

and K is a constant effective surface tension, dependent only on the ambient and applied
pressures. The effective surface tension shall be determined later.

Denoting the solution over the range (t−, t+) as R− (t) = R (t), the first equation can
be solved on the domain by integrating twice, with the initial conditions R− (t−) = ζR0
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and Ṙ− (t−) = ωζR0, where ζ = 1.6 is a matching parameter inferred from full numerical
simulations. Thus on (t−, t+) the governing equation is given by

R2
−

(
1 +

4αn

9D
R−

)
=

4

3ρω2

(
p0 − pa sinωt+ paω (t− t−) cosωt− − A

2
ω2 (t− t−)

2

)

+ ζ2R2
0

(
1 +

4αn

9D
ζR0 + 2ω

(
1 +

2αn

3D
ζR0

)
(t− t−)

)
.

(16a)

Solving the equation on the next domain (t+, tmin] for R+ (t) = R (t), by enforcing that R
is derivative is continuous at t+, i.e. R− (t+) = R+

(
t+

)
and Ṙ−

(
t+

)
= Ṙ+

(
t+

)
, yields

R2
+

(
1 +

2αn

3D
R+

)
=

2

ρω2

(
p0 − pa sinωt+ paω (t− t+) cosωt+ − A

2
ω2 (t − t+)

2

)
+ c1 (t− t+) + c2

(16b)

where the constants

c1 = 2Ṙ−

(
t+

)
R−

(
t+

) (
1 +

αn

D
R−

(
t+

))
and c2 = R2

−

(
t+

)(
1 +

2αn

3D
R−

(
t+

))
(17)

ensure continuity. Closed form expressions for the radius during expansion can be found
by solving a cubic equation, but are overly complicated and are omitted for brevity.
However, for a single bubble the solution can be written as

R2
+ (t) =

2

ρω2

(
p0 − pa sinωt+ paω

(
1

3
t+ t+

)
cosωt+

−A

2
ω2

(
t2 + t2+ +

2

3
tt+

))
+ ζ2R2

0 (1 + 2ω (t+ t+))

(18)

It is important to note that at the instance of collapse the model breaks down, with all
solutions unphysical. That is, the roots of the cubic are a pair of complex conjugates and
negative real root. The instance of collapse can be crudely approximated by setting the
right-hand side of Eq. (16b) equal to zero and solving for tmin. Although this provides
a reasonably accurate approximation for the collapse time, during the latter part of
the collapse phase the model neglects effects such as internal pressure which become
comparable to the inertial terms when arresting the collapse of the bubble.

The maximum radius Rmax = R+ (tmax) can be found by setting Ṙ+ (t) = 0 to yield
an implicit expression for the time t = tmax, which can be substituted into Eq. (16b).
The time at which the radius of the bubble is maximal is found via numerical solutions
to the transcendental equation

1

ρω2
(pa cosωtmax + pa cosωt+ −Aω (tmax − t+)) + c1 = 0. (19)
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There is only one root to equation (19) in the domain (t+, tmin], as in the limit t→ tmin

the radius tends to zero, R+ (t) = 0.
The transition radius Rtrans is the initial radius which demarcates weakly oscillating

bubbles from bubbles which undergo rapid expansion. Hilgenfeldt [22, Fig. 7] showed
numerically that for an inertially collapsing bubble, that is when pa � p0, the ratio of
the maximum radius to the initial radius was constant when the initial radius was close
to the transition radius. Thus

∂

∂R0

(
Rmax (p,R0)

R0

)∣∣∣∣
R0=Rtrans

= 0 with Rtrans =
4σ

3 (p0 − pa)
. (20)

Following Hilgenfeldt’s analysis it is simple to show that the transition radius is
independent of the number of bubbles. Hence, the effective surface tension can
now be approximated by matching the transition radius with the maximum of the
nondimensional function Rmax/R0.

The maximum radius was found by solving Eq. (19), without dependence on ζ or the
effective surface tension K, that is A = p0. Trigonometric terms can be expanded to
first-order to give

t(0)max =
1

ωp0

(
pa +

1

3
(pa cosωt+ − p0ωt+)

)
(21)

which depends only on the applied and ambient pressures. In [38] the procedure was
extended to higher-orders. Again, neglecting the effects of surface tension, equation (19)
is solved and trigonometric terms expanded to second-order as

t(1)max =
1

ω

(
pa
p0

+

√
2

pa

(
ωp0t

(0)
max + 3ω2ρc1 +

p20
2pa

))
(22)

which now depends on R0 and through c1 on αn, as well as the applied and ambient

pressures. However, it is assumed that the dependence on R0 is weak, so that ∂t
(1)
max/∂R0

can be neglected. Thus expression (22) can be substituted in Eq. (16b) to give the
maximum radius and the condition (20) applied to yield an expression for the effective
surface tension. When αn = 0 the effective surface tension can be written in the simple
form

K (p) =
3t2max + 3t+ + 2tmaxt+

g (p, tmax)

3

4
√
3
(p− 1) with tmax = t(1)max (23)

where

g (p, t) =
2

ρω2

(
p0 − pa sinωt+ paω

(
1

3
t+ t+

)
cosωt+

)
. (24)

However, when interaction is considered the expression for the effective surface tension
becomes far more complicated.

From the analysis, the time when the radius of the bubble is largest is very weakly
dependent on the number of bubbles, which is also illustrated by the full numerical
simulations of the Rayleigh-Plesset equation (8) in Fig. 2. The maximum radius is
strongly influenced by the number of bubbles. The maximum radius Rmax is found by
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substituting the value of the collapse time into the expression (16b) and solving the cubic
equation for Rmax. Typically, there is a positive real root and a pair roots those real
part is always negative. The positive real root of the cubic is a monotonically decreasing
function with respect to αn/D. Thus effect of interaction decreases the time-averaged
size of the bubble.

Numerical calculations, illustrated in Fig. 4 clearly show that the approximations are
in good agreement with the full numerical simulations up to the point of collapse.

The maximum radius for small multi-bubble clusters is shown in Fig. 5. The reduction
in the maximum radius due to the influence of interaction is clear, in good agreement
with those observed in [7]. Note that the calculations hold over a portion of a single
acoustic cycle, so that if a bubble displays characteristics of chaotic behaviour, such as
a period-doubling and sensitivity to initial conditions, then these will not be directly
observed in the analysis. However, if a bubble is oscillating chaotically this can be
incorporated into the analysis by letting ζ be a random variable for each acoustic cycle.

Towards the end of the inertial collapse phase while the acceleration is positive,
that is while the gas is still accelerating into the fluid, any non-spherical perturbations
will grow exponentially and shape instability may develop during this brief time. This
mechanism of instability is known as the Rayleigh–Taylor instability [39]. As the times
at which the bubble reaches its maximum and minimum amplitudes of oscillation are
weakly influenced by the number of bubbles, yet the maximum amplitude decreases
noticeably as the number of bubbles increases, the analysis suggests that the influence
of the interaction may soften the collapse. Thus, due to the influence of the interactions
the likelihood of Rayleigh–Taylor instability should be reduced.

4. Conclusion

In this paper the interaction of a cluster of equally sized bubbles is investigated. If the
bubbles are arranged in a regular array, planar to the applied acoustic field, then for each
bubble the sum of the re-radiated pressure fields are equal, thus the governing equation
for a bubble cluster can be reduced from an arbitrarily large 2n-dimensional system
to a single second-order modified Rayleigh–Plesset differential equation. Furthermore,
the first-order interactions of bubbles arranged in a regular array can be calculated
exactly using Chebyshev polynomials of the second kind. As the number of bubbles
increases, the natural frequency of the cloud decreases, in agreement with existing
experimental observations. The expansion phase of the bubble in a multi-bubble model
is approximated by exploiting the observation that the first-order interaction is an exact
differential. From the approximate equation, the expansion phase for a bubble in the
cluster is found explicitly. Thus a time-averaged void fraction can easily be derived.
The maximum radius can be found by solving for the time at which the bubble radius is
stationary. An expression for the time at which the bubble radius is maximal is derived
and solved numerically. It is observed that the time of maximum expansion is weakly
dependent on the number of bubbles, which is also seen from full numerical simulations of
the Rayleigh–Plesset equation. On substituting the time of maximum expansion into the
expression for the expansion, the maximum radius can be calculated. This expression
is influenced by the number of bubbles, again in good agreement with full numerical
simulations of the Rayleigh–Plesset equation. As the maximum amplitude of oscillation
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Figure 4: Comparison of analytical solution given by Eq. (16) and full numerical simulation (8)
for a single bubble of size R0 = 5μm with parameters given as in Fig. 2.

is reduced but the time between maximum to minimum radii essentially remains the
same, it is conjectured that the likelihood of Rayleigh–Taylor instability developing may
be reduced.

The analysis is complicated by the fact that the interaction is an exact differential
yet approximations are made for the inertial terms of the bubble over two time domains.
For a single bubble the expansion phase was modelled by a pair of differential equation
whose inhomogeneous forcing terms had different co-efficients. Now, in the two domains,
the third-order differentials also differ, cf. (16). An alternative would be to make the
same assumptions for the interaction as are made for the inertial terms of the bubble,
and thus approximate the interaction. However, this does not simplify the analysis as
closed form expressions for the expansion are still given by the roots of a cubic equation,
with a decrease in the accuracy of approximation.
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