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1 Vectors
The set of all real numbers is denoted as R and RN as the set of all vectors with
N coordinates, whose entries are real numbers. Vectors are denoted by v or ~v.

The vector whose every entry is zero is called the zero vector. But note that
if ~v = ~0 ∈ R2 and ~u = ~0 ∈ R3, then ~v 6= ~u.

Definition 1.1 (Linear Combinations). Given some k vectors
~v1, ~v2, . . . , ~vk ∈ Rn, then their linear combination is an expression
of the form

a1~v1 + a2~v2 + . . .+ ak~vk

where a1, a2, . . . , ak ∈ R, i.e. are scalars.

Definition 1.2 (Dot Product). For two vectors ~a, ~b ∈ Rn, where
~a = (a1, a2, . . . , an), the dot product is given by

~a ·~b = a1b1 + a2b2 + . . . anbn.

The result is a scalar.

The length of a vector is denoted by |~v| =
√
~v · ~v. A unit vector has length

one. Any non-zero vector can be transformed to a unit vector by ~v 7→ ~v/ |~v|.
One can show that

~u · ~v = |~u| |~v| cos θ.
Thus, the angle between two vectors is given by

cos θ =
~u · ~v
|~u| |~v|

Thus, two vectors, ~v and ~u are said to be orthogonal (or perpendicular) if
~v · ~u = 0.

Definition 1.3 (Cauchy Schwarz Inequality). The Cauchy-Schwarz inequality
states that the magnitude of the between two vectors is always less than or
equal to the product of the magnitudes of the two vectors, i.e.

|~v · ~w| ≤ |~v| |~w| .

Definition 1.4 (Triangle Inequality). The triangle inequality states that the
sum of the lengths of any two sides must be greater than or equal to the
length of the remaining side. Formally, this is expressed as

|~v + ~w| ≤ |~v|+ |~w| .

It can be derived from the Cauchy-Schwarz inequality.
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For the Cauchy-Schwarz inequality, when the vectors ~v and ~w lie on the same
line, then |~v · ~w| = |~v| |~w|.

For the triangle inequality, when the vectors point in the same direction,
then the |~v + ~w| = |~v|+ |~w|.
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2 Matrices
A matrix is a rectangular array of numbers. Matrices are usually denoted by
uppercase letters. A matrix, A, with m rows and n columns, is called an m× n
matrix. If all the entries are real numbers, the matrix is a member of the set of
all real matrices with m rows and n columns, i.e. A ∈ Rm×n.

The entry in the ith row and jth column of the matrix A ∈ Rm×n is denoted
by aij or ai,j . Hence, the matrix is written as

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 .

A matrix is said to be a square matrix if the number of rows is equal to
the number of columns, i.e. A ∈ Rn×m and n = m.

Matrix Operations

Definition 2.1 (Matrix-Matrix Multiplication). For two matrices A ∈ Rm×n

and B ∈ Rn×l, the matrix product C = AB is a m× l matrix whose entries
are given by

cij =

n∑
k=1

aikbkj

for any i = 1, . . . ,m and j = 1, . . . , l.

If A is an m×n matrix and B is a n× l matrix, then A has the same number of
columns as B has rows, i.e. n. Thus, each entry of C = AB, i.e. cij is the dot
product of the ith row of A with the jth column of B, which both have length
n.

Definition 2.2 (Matrix-Vector Multiplication). For a matrix A ∈ Rm×n and
vector x ∈ Rn, the matrix-vector product Ax = y is an n vector whose
entries as given by

yj =

n∑
i=1

aijxi.

Definition 2.3 (Row and Column Vectors). When matrix A ∈ Rm×1 is com-
prised of a single column of m entries, it is called a column vector. Similarly,
a 1× n matrix with a single row of n entries is called a row vector.
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Thus vTv is a 1 × 1 matrix, and vvT is a n × n matrix, the former is the dot
product (or an inner product), whereas the later is an outer product and is often
written as v ⊗ v.

Definition 2.4 (Transpose). For a matrix A ∈ Rm×n, the transpose of the
matrix AT ∈ Rn×m where all elements are mapped to aij = aji.

Thus, if x is a column vector it is possible to perform Ax = y, then the equi-
valent multiplication by a row vector is xTAT = yT .

Definition 2.5 (Trace). For a square matrix A ∈ Rn×n, the trace is defined
as the sum of the elements on the main diagonal.

tr (A) =
n∑

i=0

aii.

Properties of Matrix Operations
1. A+B = B +A

2. c (A+B) = cA+ cB

3. C (A+B) = CA+ CB – left-hand distributive property

4. (A+B)C = AC +BC – right-hand distributive property

5. AB 6= BA

6. A+ (B + C) = (A+B) + C

7. A (BC) = (AB)C — associative property

Proposition 2.6 (Transpose of Matrix Products). It can be shown that:

(AB)
T
= BTAT

Useful Types of Matrices
• The identity matrix is the square matrix I such that AI = A and

IA = A, all entries on the main diagonal are one, all others are zero.

• A diagonal matrix is a matrix where all entries outside the main diagonal
are all zero, i.e. aij = 0 when i 6= j.

• A banded matrix is a matrix whose non-zero entries are confined to a
diagonal band, comprising the main diagonal and zero or more diagonals
on either side.
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• The inverse matrix of a square matrix is the matrix A−1 such that
AA−1 = A−1A = I. A matrix is non-singular or invertible if there exists
an inverse matrix exists.

• A square matrix A is symmetric if A = AT , that is, ai,j = aj,i for all
indices i and j.

• A square matrix, with complex elements, is said to be Hermitian if the
matrix is equal to its conjugate transpose, i.e. ai,j = aj,i for all indices i
and j. A Hermitian matrix is written as A = AH .

• An orthogonal matrix Q is a matrix whose columns ~qi are orthogonal to
one another, that is ~qi ·~qj = 0 for i 6= j and have unit length, i.e. ‖~qi‖ = 1.

Proposition 2.7 (Inverse of Orthogonal Matrices). The inverse of an ortho-
gonal matrix Q is its transpose, i.e.

Q−1 = QT .

• A Markov matrix is a matrix whose elements are all positive and each
column sums to one.

Proposition 2.8 (Largest Eigenvalue of Markov Matrices). The largest eigen-
value of a Markov matrix is equal to one.

• A permutation matrix is a square matrix that has exactly one entry of
1 in each row and each column and all other entries 0.

• Rotation matrices describe rotations by an angle about the axes of a
coordinate system. They can be denoted by Rx(α), i.e. rotation by angle
θ about the x axis. The product of two rotation matrices is also a rotation
matrix. Note that in general Rx (θ)Ry (β) 6= Ry (β)Rx (θ).

• Reflection Matrices: R = I − 2uuT .

• A square matrix is said to be lower triangular matrix if all the elements
above the main diagonal are zero, i.e. aij = 0 when i < j. Similarly, a
matrix is said to be upper triangular if all the entries below the main
diagonal are zero, that is aij = 0 when i > j. A matrix is said to be
strictly upper triangular (or strictly lower triangle) if the main diagonal
is also zero.
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Properties of Nonsingular Matrices
For a nonsingular matrix, the following all hold:

• Nonsingular matrices have full rank.

• A square matrix is nonsingular if and only if the determinant of the matrix
is non-zero.

• If a matrix is singular, both versions of Gaussian elimination (with and
without pivoting) will fail due to division by zero, yielding a floating ex-
ception error. Another way to understand this is that the number of pivots
is equal to the rank, so if the matrix does not have full rank, so there will
not be enough pivots in order to transform the matrix in to row-echelon
form.
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3 Linear Systems

Definition 3.1 (Systems of Linear Equations). A system of linear equations
(or a linear system) is a collection of one or more linear equations involving
the same variables. If there are m equations with n unknown variables to
solve for, i.e.

a1,1x1 + a1,2x2 + . . .+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

...
am,1x1 + am,2x2 + · · ·+ am,nxn = bm

then the system of linear equations can be written in matrix form Ax = b,
where

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 , x =


x1

x2

...
xn

 , and b =


b1
b2
...
bm

 ,

with A ∈ Rm×n, x ∈ Rn and b ∈ Rm.

Direct Methods

Algorithm (Gaussian Elimination).
Gaussian elimination is a method to solve systems of linear equations based
on forward elimination (a series of row-wise operations) to convert the mat-
rix, A, to upper triangular form (echelon form), and then back-substitution
to solve the system. The row operations are:

• row swapping

• row scaling, i.e. multiplying by a non-zero scalar

• row addition, i.e. adding a multiple of one row to another
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1: procedure Forward Elimination
2: for k = 1 to n− 1 do
3: for i = k + 1 to n do
4: for j = k to n do
5: ai,j = ai,j −

ai,k
ak,k

ak,j

6: end for
7: bi = bi −

ai,k
ak,k

bk

8: end for
9: end for

10: end procedure
11: procedure Back Substitution
12: xn =

bn
an,n

13: for i = n− 1 to 1 do
14: y = bi
15: for j = n to i+ 1 do
16: y = y − ai,jxj

17: end for
18: xi =

y

ai,i
19: end for
20: end procedure

Algorithm (Gaussian Elimination with Scaled Partial Pivoting). A pivot ele-
ment is the element of a matrix which is selected first to do certain calcula-
tions. Pivoting helps reduce errors due to rounding during forward elimin-
ation.
To use partial pivoting to produce a matrix in row-echelon form

1: Find maximal absolute values vector s with entries
si = max j = 1, . . . , n |ai,j |

2: for k = 1 to n− 1 do
3: for i = k to n do
4: Compute

∣∣∣∣ai,ksi
∣∣∣∣

5: end for
6: Find row with largest relative pivot element, denote this as row j
7: Swap rows k and j in the matrix A
8: Swap entries k and j in the vector s
9: Do forward elimination on row k

10: end for
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Theorem 1 (LU-Decomposition). Let A ∈ Rn×n be invertible. Then there
exists a decomposition of A such that A = LU , where L is a lower triangular
matrix and U is an upper triangular matrix, and

L = U−1
1 U−1

2 · · ·U−1
n−1

where each matrix Ui is a matrix which describes the ith step in forward
elimination part of Gaussian elimination.

The upper triangular matrix U is given by

U = Un−1 · · ·U2U1A.
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4 Vector Spaces

Definition 4.1 (Linear Independence). A set of vectors, ~v1, ~v2, . . . , ~vn are
linearly independent if none of the vectors can be expressed as a linear
combination of the remaining n− 1 vectors.

An alternative definition is that if

c1~v1 + c2~v2 + . . . cn~vn = ~0,

then the only set of values for all the ci which satisfies this is

c1 = c2 = . . . = cn = 0.

Thus a matrix A has linearly independent columns if and only if the equation
A~x = ~0 has exactly one solution. Conversely, if the columns of A are not linearly
independent, then A~x = ~0 will have infinitely many solutions.

Definition 4.2 (Vector Spaces).
A vector space is a set V with two operations:

• Addition of the elements of V , i.e. if ~v, ~u ∈ V , then ~v + ~u ∈ V

• Multiplication of the elements of V by a scalar, i.e. if ~v ∈ V , and
α ∈ R then α~v ∈ V ,

which satisfies all of the following conditions:

1. ~v + ~u = ~u+ ~v

2. ~u+ (~v + ~w) = (~u+ ~v) + ~w

3. There exists a vector ~0 ∈ V such that ~u+~0 = ~u for all ~u ∈ V

4. There exists a vector ~1 ∈ V such that ~u~1 = ~u for all ~u ∈ V

5. For any vector ~v ∈ V , there exists a vector ~u ∈ V such that ~v+ ~u = ~0,
which is denoted as ~u = −~v

6. For any a, b ∈ R and ~v ∈ V , a (b~v) = (ab)~v

7. a (~v + ~u) = a~v + a~u

8. (a+ b)~v = a~v + b~v

Definition 4.3 (Subspaces). If V is a vector space and W ⊂ V and W is also
a vector space, then it is called a subspace of V .
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Definition 4.4 (Span). If A = {v1, . . . ,vk} where each vector vi ∈ Rn, then
the span of A is the set of all possible linear combinations of the vectors in
A.

Definition 4.5 (Basis). A basis of a vectors span is the maximal collection
of linearly independent vectors from that vector space.

Thus, if you add another vector from the vectors space to the basis set, it will
be a linear combination of the vectors from the basis.

The number of vectors in the basis is the dimension of the vector space.

Definition 4.6 (Orthogonal Basis). A basis is orthogonal if the collection of
all basis vectors are orthogonal.

Lemma 4.7. Any orthogonal collection of vectors is linearly independent,
hence is a basis of its span.

For a vector space with basis vectors ~bi, the coordinates of ~x with re-
spect to the basis B is the vectors of coefficients ~c = (c1, . . . , cn) such that
~x = c1~b1 + . . .+ cn~bn. Thus, coordinates are by solving B~c = ~x. This requires
the inverse, but if the basis vectors form an orthogonal basis, so the matrix B
is orthogonal and B−1 = BT .

Definition 4.8 (Rank). The rank of a matrix A is the dimension of the column
space of A.

The rank is also the number of pivots in A.

Definition 4.9 (Column and Row Spaces). The column space of a matrix A
is the span of all columns of A. Similarly, the row space is the span of the
rows of A or the column space of AT .

Definition 4.10 (Null spaces). The null space of a matrix A is the collection
of all solutions to Ax = 0.

Definition 4.11 (Projections). The projection of a vector v onto a nonzero
vector u is given by

proju (v) =
v · u
u · u

u.

12



DRAFT
MDE-MET-01: Calculus & Linear Algebra 4 Vector Spaces

Definition 4.12 (Gram-Schmidt). Given k vectors v1, . . . ,vk the
Gram–Schmidt process defines the vectors u1, . . . ,uk as follows:

u1 = v1

u2 = v2 − proju1
(v2)

...

uk = vk −
k−1∑
j=1

projuj
(vk)

The set of vectors uk are orthogonal. Normalizing the vectors as ej =
uj

‖uj‖
is a set of orthornormal vectors.
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5 Eigenvalues & Eigenvectors

Determinants
For a 2×2 matrix

A =

(
a b
c d

)
,

the determinant, denoted by |A| or detA is given by ad− bc.

Leibniz Method : Consider all possible choices of n elements from a matrix
such that there is precisely one element chosen from each row and column.
Let such a choice be denoted by σ and let sgnσ be −1 to the power of
the number of row swaps required to turn the choice σ into the diagonal.
Then detσ is the sum of the products of each σ multiplied by its sign.

Laplace Expansion : delete the ith row and the jth column from a matrix to
yield a (n− 1)× (n− 1) matrix, called a minor, denoted by Mij , then the
cofactor is

Cij = (−1)
i+j

detMij

and the determinant is given by

detA = ai1Ci1 + ai2Ci2 + . . .+ ainCin

which is the cofactor expansion along row i. The computation of the
determinant can be performed for any row. The cofactor expansion can
also be performed along any column, i.e.

detA = a1jC1j + a2jC2j + . . .+ anjCnj .

The components of the inverse of a matrix can be found via(
A−1

)
ij
=

Cji

detA
.

Algorithm (Cramer’s Rule). For Ax = b, define the matrix Bj as the matrix
A with the jth column replaced by b, then, if detA 6= 0,

xj =
detBj

detA
.

Properties of Determinants

1. A−1 exists if and only if detA 6= 0.

2. detA is equal to the product of the pivots of A up to a sign.

3. The determinant changes sign when two rows or columns are interchanged
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4. det I = 1

5. The determinant is a linear function of each row of the matrix, i.e. if one
row is scaled so is the determinant, and if a row is translated by the row
vector, so the determinant is also translated, i.e. Let A be a row matrix
and the row ri 7→ αri + βr̄, then the determinant of the new matrix is
given by det(A) 7→ α det (A) + β det

(
Ā
)
, where

A =



r1
...
ri
...
rn

 and Ā =



r1
...
r̄
...
rn

 .

6. If any two rows are equal the determinant is zero.

7. Subtracting one row from another does not change the determinant.

8. As a consequence, if a row is zero, the determinant is zero.

9. If a matrix is triangular, then the determinant is the product of the diag-
onal entries.

10. det (A) = det
(
AT

)
.

11. det (AB) = det (A) · det (B).

Eigenvalues and Eigenvectors

Definition 5.1 (Eigenvalues & Eigenvectors). An eigenvector is a non-zero
vector that has its direction unchanged by a given linear transformation.
More precisely, an eigenvector, v, of a linear transformation, A, is scaled by
a constant factor, λ, when the linear transformation is applied to it:

Av = λv.

Then v is called an eigenvector of A, and λ is the corresponding eigenvalue.
Thus Av and v are collinear.

Thus,
Av = λv ⇔ Av − λv (A− λI)v = 0

i.e. there is a matrix B such that

Bv = 0 where B = A− λI.

As, by definition, v is not a zero vector and Bv = 0, then the determinant
of B is zero. Finding the roots of the polynomial, called the characteristic
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equation, |A− λI| yields the eigenvalues, whose eigenvectors are in the span
of the nullspace of B.

For a matrix A, the column matrix of its eigenvectors X = (v1 v2 · · · vn)
and the diagonal matrix of the eigenvalues D = diagλi then

Av = X−1DXv

thus, as this is true for any v, then a matrix can be expressed in terms of its
eigenvalues and its eigenvectors as

A = X−1DX.

Then A2 = X−1DXX−1DX = X−1D2X. Hence powers of matrices, such as
Ak, can be computed for any k, as Ak = X−1DkX.

Note the following properties:

• If A is triangular, its eigenvalues are the entries on the diagonal.

• For an arbitrary n by n matrix A, the product of the n eigenvalues is equal
to the determinant of A.

• The sum of the n eigenvalues is equal to the trace of A.

Principal Component Analysis

Theorem 2 (Eigenvalues of Symmetric Matrices). All eigenvalues of a sym-
metric matrix are real and positive. Furthermore, the eigenvectors can be
chosen to be pairwise orthogonal.

Definition 5.2 (Principle Component Analysis). Principal Component Ana-
lysis is a linear transformation of a dataset, Z, onto a new coordinate system,
X, such that the directions (principal components) capturing the largest
variation in the data.

Algorithm (Finding the Principal Components). Shift so that the mean of
each column is zero, i.e. subtract the mean of each column of Z from itself,
yielding a new matrix, X.

Let Xw be the projection of each data row on the direction w.

Given the mean of each column is zero, so the variance of the set of column

16



DRAFT
MDE-MET-01: Calculus & Linear Algebra 5 Eigenvalues & Eigenvectors

vectors is given by

varX =
1

n− 1

(
x2
1 + . . .+ x2

n

)
=

1

n− 1
(Xw)

T
(Xw)

=
1

n− 1
wTXTXw.

Now find the vector w so that variance is maximal.
Note that matrices of the form A = XTX are symmetric, i.e. AT = A, then
all eigenvalues are real and there exists a orthonormal basis given by the
eigenvectors, qi of A.

Let Q = (q1 q2 · · · qn), with QT = Q−1 and D = diagλ, with eigenvalues λi.
Then A can be expressed using the eigenvalues and eigenvectors, thus

XTX = A = QDQT .

Then, the expression for the variance is given by

wTXTXw = wTAw

= wTQDQTw

=
(
wTQ

)
D

(
QTw

)
=

(
QTw

)T
D

(
QTw

)
, let y = QTw

= yTDy.

Since w is a unit vector and Q is orthogonal, so y is also a unit vector. It
can easily be shown that the vector y = (1, 0 . . . 0)

T maximizes the variance.
Thus, the corresponding principal component w is recovered from y = QTw,
i.e.

w =
(
QT

)−1
y

=
(
QT

)T
y

= Qy.

17
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6 Taylor Series
The Taylor series, or the Taylor expansion of a function, is defined as

Definition 6.1 (Taylor Series). For a function f : R 7→ R which is infinitely
differentiable at a point c, the Taylor series of f(c) is given by

∞∑
k=0

f (k) (c)

k!
(x− c)

k

where f (k) =
dkf

dxk
is the kth derivative.

This is a power series, which is convergent for some radius.

Theorem 3 (Taylor’s Theorem). For a function f ∈ Cn+1 ([a, b]), i.e. f is
(n+ 1)-times continuously differentiable in the interval [a, b], then for some
c in the interval, the function can be written as

f (x) =

n∑
k=0

f (k) (c)

k!
(x− c)

k
+

f (n+1) (ξ)

(n+ 1)!
(x− c)

n+1

for some value ξ ∈ [a, b] where

lim
ξ→c

f (n+1) (ξ)

(n+ 1)!
(x− c)

n+1
= 0.

For a function f : Rn 7→ R which is differentiable around a, then the Taylor
expansion can be generalised as

f (x+ a) = f (x) + a · J +
1

2
aTHa+ . . .

where J is the Jacobian and H is the Hessian.

18
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7 Calculus of Function of a Single Variable

Definition 7.1 (Derivative of a Function). The derivative of a function f(x)
is given by

df

dx
= f ′ (x) = lim

h→0

f (x+ h)− f (x)

h
.

Note the following

1. f (x) = c ⇒ f ′ (x) = 0

2. f (x) = xa ⇒ f ′ (x) = axa−1

3. f (x) = ax ⇒ f ′ (x) = ax ln a

4. f (x) = logb x ⇒ f ′ (x) =
1

x loge b

5. f (x) = sin (x) ⇒ f ′ (x) = cos (x)

6. f (x) = cos (x) ⇒ f ′ (x) = − sin (x)

Thus for f(x) = ax, when a = e then, f = ex and f ′ (x) = f (x) = ex.
Similarly, for f (x) = logb x when b = e, i.e. f (x) = loge x = lnx, so f ′ (x) =

1

x
.

Definition 7.2 (Summation Rule). For a function of the form f = g + h,

d (h+ g)

dx
= h′ (x) + g′ (x)

Definition 7.3 (Product Rule). For a function which is of the form f = gh

d (hg)

dx
= h′ (x) g (x) + h (x) g′ (x)

Definition 7.4 (Quotient Rule). For a function which is of the form f = g/h

df (x)

dx
=

h (x) g′ (x)− h′ (x) g (x)

(h′ (x))
2

Definition 7.5 (Chain Rule). The chain rule enables the derivative of a func-
tion which can be expressed as a composition of two differentiable functions.
For a function which is of the from f = g (h (x))

df (x)

dx
= g′ (h)h′ (x)

19



DRAFT
MDE-MET-01: Calculus & Linear Algebra Single Variable Calculus

Another expression is
df (x)

dx
=

dg

dh

dh

dx

This form can be understood as stating that if a function f is written in
terms of g, which itself depends on the variable x (that is both f and g
are dependent variables), then f depends on x as well, via the intermediate
variable g.

Definition 7.6 (Critical Points). If f ′ (x0) = 0 for some x0, then this point is
called a critical point of f .

Critical points are candidates for being local maxima or minima for the function.
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8 Calculus of a Function of Several Variables

Definition 8.1 (Partial Derivatives). For a function with multiple input ar-
guments, z = f (x, y), the partial derivative of f with respect to x can be
expressed as

∂f

∂x
= lim

h→0

f (x+ h, y)− f (x, y)

h

similarly, the partial derivative with respect to y can be expressed as

∂f

∂y
= lim

h→0

f (x, y + h)− f (x, y)

h
.

Note that the partial derivative is often denoted as ∂f

∂x
= fx.

Definition 8.2 (Gradient of a Function). The gradient of a function
z = f (x1, x2, . . . , xn) is the column vector

∇f =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)T

.

As the gradient ∇f depends on the point at which it is evaluated, it is
denoted by ∇f (x1, x2, . . . , xn).

The gradient is the analogue to the derivative, but, as a vector, has a direc-
tion.

Definition 8.3 (Critical Point of a Function). If f (x, y) has a local minima
or maxima at (x0, y0), then ∇f (x0, y0) = ~0.

Such points are called critical points.

Note that not all critical points are either maxima or minima. The classific-
ation of the critical points high-order derivatives.

Definition 8.4 (Second Derivatives). Each partial derivative can be differen-
tiated again to yield a second-order partial derivative,

∂2f

∂xi∂xj
= lim

h→0

fxi
(x1, . . . , xj + h, . . . , xn)− fxi

(x1, . . . , xn)

h
.

21



DRAFT
MDE-MET-01: Calculus & Linear Algebra Multivariate Calculus

Thus, all second derivatives can be expressed using the Hessian matrix

H (~x) =


fx1x1

fx1x2
· · · fx1xn

fx1x1
fx2x2

· · · fx2xn

...
...

. . .
...

fxnx1 fxnx2 · · · fx1xn

 .

If the second-order partial derivatives are continuous, then the Hessian mat-
rix H is symmetric. Then, as symmetric all eigenvalues are real-valued, (see
Theorem 2).

The Taylor expansion of a function of more than one variable is given by

f (~x+ ~a) = f (~a) +
1

2
~xTH (~a) ~x+ . . .

Note that the Hessian matrix can be factorized as

H = QDQ−1

where D is the diagonal matrix diag (λ1, . . . , λn) and λi are the eigenvalues
associated with eigenvector qi of the Hessian matrix. The eigenvector qi is the
ith column of the matrix Q. As the eigenvectors are orthogonal, so Q is an
orthogonal matrix, thus Q−1 = QT . Hence,

f (~x+ ~a) = f (~a) +
1

2
~xTQDQT~x+ . . .

Letting ~y = QT~x, then

f (~x+ ~a) = f (~a) +
1

2
~yTD~y + . . .

= f (~a) +
1

2

(
λ1y

2
1 + . . . λny

2
n

)
+ . . .

So:

1. If all λ1, λ2, . . . , λn > 0, then the critical point is a local minima.

2. If all λ1, λ2, . . . , λn < 0, then the critical point is a local maxima.

3. If some λj < 0, and some λi > 0, then the critical point is neither a local
minima nor maxima. If none of the eigenvalues are equal to zero, then the
critical point is called a saddle point.

4. If all λ1, λ2, . . . , λn ≥ 0 and at least is zero, or λ1, λ2, . . . λn,≤ 0 and at
least one is zero then the test is inconclusive, as the classification of the
point depends on higher derivatives.
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The Hessian measures curvature. Curvature can inform how minimization
methods converge.

The Rayleigh quotient is given by

R =
xTAx

xTx

where A is Hermitian. It has a minimum at λmin, the smallest eigenvalue of A,
when x = vmin, which is the corresponding eigenvector. Similarly, the Rayleigh
quotient has a maximum value at λmax, the largest eigenvalue of A. (Note that
if x ∈ C, then the conjugate transpose is used instead).

Jacobians
If the function outputs a vector, i.e. f : Rn 7→ Rm, write each component of
f = (f1, . . . , fm) and an analogous procedures can be performed on each com-
ponent of the vector-valued function. That is, a gradient can be computed for
each component ∇fi, critical points must satisfy the vector equation f (x∗) = 0.

Definition 8.5 (Jacobian). For a function f : Rn 7→ Rm Jacobian matrix of
f , denoted Jf ∈ Rm×n, is defined as

Jf =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn


i.e. the (i, j)

th entry is ∂fi
∂xj

.

For f(u, v), let u = g(x), v = h(x) then the function is a composition
F (x) = f (g(x), h(x)). Apply the chain rule to compute the gradient

∇F = ∇ (f(g(x)), f(h(x))) = ∇ f
∂(g, h)

∂x

where
∇f

∂(g, h)

∂x
=

(
∇g
∇h

)
is the Jacobi matrix. Each row of the Jacobi matrix is a gradient of g or h.

If f : Rn 7→ R, then
J = (∇f (x))

T
.

Definition 8.6 (Directional Derivative). For a vector w, the directional de-
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rivative of f(x) in the direction of w is given by

∇wf (x) = lim
h→0

f(x+ hw)− f(x)

h
.

If the function is differentiable, then

∇wf (x) = ∇f (x) ·w.

As, by convention, ∇f (x) is a column vector.

The directional derivative can then be expressed as a matrix-vector product,
specifically a Jacobian-vector product.

By the Cauchy-Schwarz inequality, the largest value of the directional deriv-
ative is when ∇f and w are pointing in the same direction.
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