Jacobs University Bremen Spring Semester 2022

Dr. D. Sinden

CA-MATH-804: Numerical Analysis¹

Summary from 4 January 2024

Contents

¹Note that the proofs for theorems marked with an *[∗]* where presented in class.

1 Principles of Numerical Mathematics

Find *x* such that $F(x, d) = 0$ for a set of data, *d* and *F*, a functional relationship between *x* and *d*.

1.1 Well Posed Problems

Definition 1.1 (Well-Posed Problems)**.** A problem is said to be **well-posed** if

- a solution exists,
- the solution is unique,
- the solution's behaviour changes continuously with the initial conditions.

A problem which does not have these properties is said to be **ill-posed**.

Definition 1.2 (Relative and Absolute Condition Numbers)**.** The **relative condition number** of a problem is given by:

$$
K(d) = \sup_{\delta d \in \mathcal{D}} \frac{\|\delta x\| / \|x\|}{\|\delta d\| / \|d\|}.
$$
 (1)

The **absolute condition number** is

$$
K_{\rm abs}(d) = \sup_{\delta d \in \mathcal{D}} \frac{\|\delta x\|}{\|\delta d\|}.\tag{2}
$$

Consider a well-posed problem, then construct a sequence of approximate solutions via a sequence of approximate solutions and data, i.e. $F_n(x_n, d_n) = 0$

Definition 1.3 (Consistency)**.** If the *d* is admissible for *Fn*, a numerical method $F_n(x_n, d_n) = 0$ is **consistent** if

$$
\lim_{n \to \infty} F_n(x, d) \to F(x, d). \tag{3}
$$

The method is strongly consistent if $F_n(x, d) = 0$ for all $n \geq 0$.

Given an approximate solution, x_n and solution x , the absolute and relative error are given by

$$
E(x_n) = |x - x_n|
$$
 and $E_{rel}(x_n) = \frac{|x - x_n|}{|x|}$ if $x \neq 0$. (4)

Definition 1.4 (Stability)**. Stability** means that for any fixed *n* there exists a unique solution x_n for the data d_n and that the solution depends continuously on the data:

$$
\forall \eta > 0 \quad \exists K = K(\eta, d_n) \quad \text{such that} \quad \|d_n\| < \nu \Rightarrow \|x_n\| < K \|d_n\|. \tag{5}
$$

Definition 1.5 (Relative and Absolute Asymptotic Condition Numbers)**.** If the sets of functions for $F_n(x_n, d_n) = 0$ and $F(x, d) = 0$ coincide, that is

$$
K_{n} (d_{n}) = \sup_{\delta d_{n} \in \mathcal{D}_{n}} \frac{\|\delta x_{n}\| / \|x_{n}\|}{\|\delta d_{n}\| / \|d_{n}\|}
$$
(6)

and

$$
K_{n,\text{abs}}(d_n) = \sup_{\delta d_n \in \mathcal{D}_n} \frac{\|\delta x_n\|}{\|\delta d_n\|} \tag{7}
$$

then the **relative asymptotic condition number** is

$$
K^{\text{num}}(d) = \lim_{k \to \infty} \sup_{n \le k} K_n(d_n).
$$
 (8)

The **absolute asymptotic condition number** is

$$
K_{\rm abs}^{\rm num}(d) = \lim_{k \to \infty} \sup_{n \le k} K_{n,\text{abs}}(d_n).
$$
 (9)

Definition 1.6 (Convergence)**.** A method is **convergent** if and only if:

 $\forall \varepsilon > 0$, $\exists n$ such that $||x(d) - x_n(d + \delta d_n)|| \le \varepsilon.$ (10)

Theorem 1 (Lax-Ritchmyer). A numerical algorithm converges if and only if it is consistent and stable.

Definition 1.7 (Inner Product)**.** An **inner product** (sometimes called a scalar product) is a function $(\cdot, \cdot) : V \times V \to F$ which takes two members of a vector space *V* and maps them to a field, *F* (that is either the real or complex numbers) and has the following properties:

- 1. Symmetry: $(x, y) = (y, x)$, indeed, conjugate symmetry $(x, y) = (y, x)$ (also called Hermitian).
- 2. Non-negativity: $(x, x) > 0$ for every $x \in \mathbb{R}^n$ and $(x, x) > 0$ if and only if $x = 0$, the zero vector.
- 3. Linearity: $(ax + by, z) = a(x, z) + b(y, z)$.

An inner product leads to notions of distance and angle.

Definition 1.8 (Orthogonality)**.** Two vectors are said to be **orthogonal** if $(x, y) = 0.$

Definition 1.9 (Norms and Semi-Norms). An operator $\|\cdot\|$: $V \to \mathbb{R}$ is called a **norm** if

- 1. Non-negativity:
	- (i) $||x|| \geq 0$ for every $x \in \mathbb{R}^n$
	- (*ii*) $||x|| = 0$ if and only if $x = 0$, the zero vector.
- 2. Linearity: $\|\alpha x\| = |\alpha| \|x\|.$
- 3. Triangle Inequality: $||x + y|| \le ||x|| + ||y||$.

An operator $|\cdot|_V : V \to \mathbb{R}$ which is linear, satisfies the triangle inequality but only satisfies the first condition of non-negativity is called a **semi-norm**.

Inner products can induce norms, that is $||x|| = \sqrt{(x, x)}$. The inner product satisfies the Cauchy–Schwarz inequality

$$
|(x, y)| \le ||x|| \, ||y||. \tag{11}
$$

Let $p \geq 1$ be a real number. The *p***-norm** (also called ℓ_p -norm) of vector $\boldsymbol{x} = (x_1, \ldots, x_n)$ is given by

$$
\|\bm{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}.
$$
 (12)

2 Matrix Analysis

Matrix norms can be produced from the vector norms:

$$
||A||_{p,q} = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_q}.
$$
 (13)

and

$$
||A||_p = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p}.
$$
 (14)

This is called an **induced matrix norm**. Note that any induced norm of the identity matrix is 1.

Without loss of generality, now consider the case when $||x|| = 1$. There are three main types of *p*-norm:

$$
||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|,\tag{15}
$$

which is simply the maximum absolute column sum of the matrix. The **infinity norm** is given by

$$
||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}| \tag{16}
$$

which is simply the maximum absolute row sum of the matrix. In the special case of $p = 2$ the induced matrix norm is called the **spectral norm**.

The spectral norm of a matrix *A* is the largest singular value of *A* (i.e., the square root of the largest eigenvalue of the matrix $A^H A$, where A^H denotes the conjugate transpose of *A*

$$
||A||_2 = \sqrt{\sigma_{\text{max}}(A^H A)}\tag{17}
$$

where $\sigma_{\text{max}}(A)$ represents the largest singular value of the matrix *A*. Also,

$$
||A^*A||_2 = ||AA^*||_2 = ||A||_2^2.
$$
\n(18)

Related to the spectral norm is the **Frobenius norm** given by

$$
||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}.
$$
 (19)

it can also be expressed as

$$
= \sqrt{\text{trace}\left(A^H A\right)}\tag{20}
$$

where the trace is the sum of the diagonal elements of a matrix, a_{ii} , and

$$
=\sqrt{\sum_{i=1}^{\min(n,m)} \sigma_i(A)}.
$$
 (21)

Theorem 2^{*}. Let $A \in \mathbb{R}^{n \times n}$, then

- 1. $\lim A^k = 0 \Leftrightarrow \rho(A) < 1$. Where $\rho(A)$ is the largest absolute value of $k \rightarrow \infty$
the eigenvalues of *A*. This is called the **spectral radius**
- 2. The geometric series, $\sum_{n=1}^{\infty}$ *k*=0 *A*^{*k*} is convergent if and only if $\rho(A) < 1$. Then in this case, the sum is given by

$$
\sum_{k=0}^{\infty} A^k = (I - A)^{-1}.
$$
 (22)

3. Thus, if $\rho(A) < 1$, the matrix $I - A$ is invertible and

$$
\frac{1}{1 + \|A\|} \le \left\| (I - A)^{-1} \right\| \le \frac{1}{1 - \|A\|} \tag{23}
$$

where $\|\cdot\|$ is an induced matrix norm such that $\|A\| < 1$.

Theorem 3^{*}. Let $A \in \mathbb{R}^{n \times n}$ be non-singular and let $\delta A \in \mathbb{R}^{n \times n}$ be such that $||A^{-1}|| ||\delta A|| < 1$. Furthermore, if $x \in \mathbb{R}^n$ is a solution to $Ax = b$, where $b \in \mathbb{R}^n$ and $b \neq 0$ and δx is such that

$$
(A + \delta A)(x + \delta x) = b + \delta b \tag{24}
$$

for a $\delta b \in \mathbb{R}^n$, then

$$
(A + \delta A)(x + \delta x) \le \frac{K(A)}{1 - K(A) \|\delta A\|_2 / \|A\|_2} \left(\frac{\|\delta b\|_2}{\|b\|_2} + \frac{\|\delta A\|_2}{\|A\|_2}\right). \tag{25}
$$

Theorem 4^{*}. Let $A \in \mathbb{R}^{n \times n}$ be non-singular and if $x \in \mathbb{R}^n$ is a solution to $Ax = b$, where $b \in \mathbb{R}^n$ and $b \neq 0$ and δx is such that

$$
A\left(x+\delta x\right) = b + \delta b\tag{26}
$$

then

$$
\frac{1}{K(A)}\frac{\|\delta b\|}{\|b\|} \le \frac{\|\delta x\|}{\|x\|} \le K(A)\frac{\|\delta b\|}{\|b\|}.\tag{27}
$$

Theorem 5. For $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$, assume $\|\delta A\| \leq \gamma \|A\|$ and $\|\delta b\| \leq \gamma \|b\|$ for some $\gamma \in \mathbb{R}^+$. Then, if $\gamma K(A) < 1$, then the following holds

$$
\frac{\|x+\delta x\|}{\|x\|} \le \frac{1+\gamma K(A)}{1-\gamma K(A)}\tag{28}
$$

and

$$
\frac{\|\delta x\|}{\|x\|} \le \frac{2\gamma K(A)}{1 - \gamma K(A)}.\tag{29}
$$

Theorem 6. For *A*, $C \in \mathbb{R}^{n \times n}$, let $R = AC - I$. If $||R||_2 < 1$ and

$$
||A^{-1}|| \le \frac{||C||}{1 - ||R||} \tag{30}
$$

and

$$
\frac{\|R\|}{\|A\|} \le \|C - A^{-1}\| \le \frac{\|C\| \|R\|}{1 - \|R\|}.
$$
\n(31)

In the framework of backwards a priori analysis we can interpret C as being the inverse of $A + \delta A$ (for a suitable unknown δA). We are thus assuming that $C(A + \delta A) = I$. This yields

$$
\delta A = C^{-1} - A = -(AC - I)C^{-1} = -RC^{-1}
$$
\n(32)

and, as a consequence, if $\|R\| < 1$ it turns out that

$$
\|\delta A\| \le \|R\| \|C^{-1}\|
$$

\n
$$
\le \frac{\|R\| \|A\|}{1 - \|R\|}.
$$
\n(33)

3 Iterative Solutions for Matrix Inversion

Construct a scheme which solves the linear system $Ax = b$ by generating a sequence $\{x^{(n)}\}$ which approximates the solution, *x*, that is

$$
\lim_{n \to \infty} x^{(n)} = x.
$$
\n(34)

So that $x = A^{-1}b$. Split the matrix $A = P - N$ and solve

$$
Px^{(n+1)} = Bx^{(n)} + f,
$$
\n(35)

where *P* is called a **preconditioner** and $B = P^{-1}N$ is the **iteration matrix**. An equivalent formulation is given by

$$
x^{(k+1)} = x^{(k)} + P^{-1}r^{(k)}\tag{36}
$$

where

$$
r^{(k)} = b - Ax^{(k)} \tag{37}
$$

is the **residual**.

Definition 3.1 (Consistency)**.** An iterative method is said to be **consistent** if $x = Bx + f$, or equivalently,

$$
f = (I - B)A^{-1}b.
$$
 (38)

Theorem 7. If an iterative scheme is consistent, then if and only if $\rho(B) < 1$ the method will converge for any initial guess $x^{(0)}$.

Definition 3.2 (Stationary Methods)**.** The formulation can be written as

$$
x^{(0)} = F^{(0)}(A, b) \text{ and}
$$

$$
x^{(k+1)} = F^{(k+1)}(x^{(k)}, x^{(k-1)}, \dots, x^{(0)}, A, b).
$$
 (39)

If the functions $F^{(k)}$ are independent of the number of iterations, then it is said to be **stationary**.

3.1 Jacobi Method

The Jacobi method decomposes the matrix *A* into diagonal, lower and upper triangular matrices $A = D + L + U$, and solves

$$
Dx^{(n+1)} = -(L+U)x^{(n)} + b.
$$
\n(40)

Element-wise this is

$$
x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right). \tag{41}
$$

Thus, the iterative scheme is

$$
x^{(n+1)} = -D^{-1}(L+U)x^{(n)} + D^{-1}b.
$$
 (42)

As $L + U = A - D$, so the iteration matrix can be written as $B = I - D^{-1}A$.

3.2 Over-Relaxation of Jacobi Method

Also called the weighted Jacobi method. Introduce *ω* to solve

$$
x_i^{(k+1)} = \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right) + (1 - \omega) x^{(k)}.
$$
 (43)

3.3 Successive Over-Relaxation

Introduce ω to solve

$$
(D + \omega L) x^{(n+1)} = -((\omega - 1)D + \omega U)x^{(n)} + \omega b.
$$
 (44)

3.4 Gauss-Seidel

The Gauss-Seidel method decomposes the matrix *A* into diagonal, lower and upper triangular matrices $A = D + L + U$, and solves

$$
(D+L)x^{(n+1)} = -Ux^{(n)} + b \tag{45}
$$

- **Theorem 8.** 1. If *A* is strictly diagonally dominant by rows, that is $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$, the [Jacobi](#page-7-1) and [Gauss-Seidel](#page-8-2) methods are convergent.
	- 2. If *A* and 2*D − A* are symmetric and positive definite, then the [Jacobi](#page-7-1) [method](#page-7-1) is convergent and the spectral radius of the iteration matrix *B* is equal to

$$
\rho(B) = \|B\|_A = \|B\|_D \tag{46}
$$

where $\|\cdot\|_A$ is the energy norm which is induced by the vector norm $||x||_A = \sqrt{x \cdot Ax}$

3. If and only if *A* is symmetric and positive definite, the

[Jacobi over-relaxation method](#page-8-0) is convergent if

$$
0 < \omega < \frac{2}{\rho\left(D^{-1}A\right)}.\tag{47}
$$

4. If and only if *A* is symmetric and positive definite, the [Gauss-Seidel](#page-8-2) method is monotonically convergent with respect to the energy norm $\left\Vert \cdot\right\Vert _{A}.$

Theorem 9^{*}. For any $\omega \in \mathbb{R}$ we have $\rho(B(\omega)) \geq |\omega - 1|$. Thus, [SOR](#page-8-1) does not converge if either $\omega \leq 0$ or $\omega \geq 2$.

Theorem 10 (Ostrowski). If *A* is symmetric and positive definite, then the [SOR](#page-8-1) method is convergent if and only if $0 < \omega < 2$. Furthermore, the convergence is monotonic with respect to the energy norm $\lVert \cdot \rVert_A$.

3.5 Gradient Descent

Consider the function $\Phi(y) : \mathbb{R}^n \to \mathbb{R}$ which takes the form:

$$
\Phi(y) = \frac{1}{2}y \cdot Ay - y \cdot b. \tag{48}
$$

It can be shown that solving $Ax = b$ is equivalent to minimizing Φ .

If *x* is a solution to the linear system and minimizes $\Phi(x)$ then $\nabla \Phi(x) = 0$, so that $Ax - b = \nabla \Phi(x) = 0$.

Now express the function as

$$
\Phi(y) = \Phi(x + (y - x))
$$

= $\Phi(x) + \frac{1}{2} ||y - x||_A^2$. (49)

Where $\lVert \cdot \rVert_A^2$ is the energy norm from the matrix *A*. Thus, from equation ([49\)](#page-9-1), it is possible to show that as the Hessian of the system, $\nabla^2 \Phi = A$, is symmetric and positive-definite and x is a solution to the linear system and hence minimizes Φ , then if $\Phi(y) = 0$, so *y* is equal to *x*. That is the gradient descent provides a unique solution.

Gradient descent seeks to construct a scheme which updates the vector $x^{(k)}$ according to

$$
x^{(k+1)} = x^{(k)} + \alpha^{(k)} d^{(k)}
$$
\n(50)

where $d^{(k)}$ is the update direction and $\alpha^{(k)}$ is the step size at the *k*-th iterate.

Note that in contrast to the methods above, the gradient descent method is non-stationary as values d and α change at every iterate.

The idea is to let the search direction be the gradient of the function Φ

$$
d^{(k)} = -\nabla \Phi\left(x^{(k)}\right)
$$

= -\left(Ax^{(k)} - b\right)
= b - Ax^{(k)}
= r^{(k)}. (51)

The step size is found by differentiating Φ with respect to α and setting this to zero, so that

$$
\alpha^{(k)} = \frac{r^{(k)} \cdot r^{(k)}}{r^{(k)} \cdot Ar^{(k)}}.
$$
\n(52)

Theorem 11*∗* **.** If *A* is symmetric and positive definite, then the [gradient](#page-9-0)[descent](#page-9-0) method is convergent for any $x^{(0)}$ and

$$
\left\|e^{(k+1)}\right\|_{A} \le \frac{K(A) - 1}{K(A) + 1} \left\|e^{(k)}\right\|_{A}.
$$
\n(53)

If we apply a preconditioner, i.e. multiplying both sides of the linear system from the left by P^{-1} , then the rescaled linear system is $\tilde{A}x = \tilde{b}$, where $\tilde{A} = P^{-1}A$ and $\tilde{b} = P^{-1}b$. Then the a good preconditioner will reduce the condition number of the new linear system.

3.6 Conjugate Gradient

Definition 3.3 (Conjugate Vectors)**.** If *A* is symmetric and positive definite, let the vectors *u* and *v* be *A***-orthogonal** or **conjugate** if $u \cdot Av = 0$.

Lemma 3.4^{*}. Choosing $p^{(k+1)}$ such that

$$
p^{(k+1)} \cdot Ap^{(j)} = 0 \tag{54}
$$

for $j = 0, \ldots, k$ leads to

$$
p^{(j)} \cdot r^{(k+1)} = 0. \tag{55}
$$

Lemma 3.5*[∗]* **.** Setting

$$
\beta^{(k)} = \frac{r^{(k+1)} \cdot Ap^{(k)}}{p^{(k)} \cdot Ap^{(k)}}
$$
\n(56)

and

$$
p^{(k+1)} = r^{(k+1)} - \beta^{(k)} p^{(k)} \tag{57}
$$

then, for $j = 0, \ldots, k$, yields

$$
p^{(k+1)} \cdot Ap^{(j)} = 0. \tag{58}
$$

Theorem 12^{***}. If $A \in \mathbb{R}^{n \times n}$ is a symmetric and positive definite matrix, and $b \in \mathbb{R}^n$, then the [conjugate gradient method](#page-10-0) yields the exact solution of $Ax = b$ after *n* steps.

4 Interpolation

Numerical treatment of problems often involves the process of *discretization* i.e. going from a continuous function to set of discrete points.

Interpolation provides a way of approximating continuous functions by discrete data.

Types of functions which can be used are:

- **Polynomial interpolation** : using a polynomial to approximate the data,
- **Trigonometric interpolation**: using polynomials of trigonometric functions,
- **Spline interpolation**: using a set of piecewise polynomials over subintervals of the data.

Theorem 13^{*****}. Given** $n + 1$ **distinct points** x_0, x_1, \ldots, x_n **and** $n + 1$ **corres**ponding values y_0, y_1, \ldots, y_n there exists a *unique* polynomial $\Pi_n \in \mathbb{P}_n$ such that for all $i = 0, \ldots, n$

$$
\Pi_n(x_i) = y_i. \tag{59}
$$

4.1 Lagrange Interpolation

Definition 4.1 (Lagrange Polynomials)**.** The **Lagrange form of an interpolating polynomial** is given by

$$
\Pi_n(x) = \sum_{i=0}^n y_i l_i(x) \tag{60}
$$

where $l_i \in \mathbb{P}_n$ such that $l_i(x_j) = \delta_{ij}$. The polynomials $l_i(x) \in \mathbb{P}_n$ for $i = 0, \ldots, n$, are called **characteristic polynomials** and are given by

$$
l_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}.
$$
 (61)

Theorem 14^{*****}.** Let x_0, x_1, \ldots, x_n be $n+1$ distinct nodes and let *x* be a point belonging to the domain of a given function f . Let I_x be the smallest interval containing the nodes x_0, x_1, \ldots, x_n and x and assume that $f \in C^{n+1}(I_x)$. Then the interpolation error at the point *x* is defined and given by

$$
E_n(x) = f(x) - \Pi_n f(x)
$$

=
$$
\frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)
$$
 (62)

where $f^{(n+1)}$ is the $(n+1)$ th derivative of $f, \xi \in I_x$ and ω_{n+1} is the nodal polynomial of degree $n + 1$, which is defined as

$$
\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i).
$$
 (63)

4.2 Piecewise Lagrange Interpolation

Partition \mathcal{T}_h of $[a, b]$ into *K* subintervals $I_j = [x_j, x_{j+1}]$ of length h_j such that $[a, b] = \bigcup_{j=0}^{K-1} I_j$. Let $h = \max_{0 \le j \le K-1} h_j$, .

For $k \geq 1$, introduce on \mathcal{T}_h the piecewise polynomial space

$$
X_h^k = \left\{ v \in C^0(a, b) : v|_{I_j} \in \mathbb{P}_k(I_j) \quad \forall I_j \in \mathcal{T}_h \right\}
$$
 (64)

which is the space of the continuous functions over the interval $[a, b]$ whose restrictions on each I_i are polynomials of degree less than or equal to k .

Then, for any continuous function f in $[a, b]$, the piecewise interpolation polynomial $\prod_{h}^{k} f$ coincides on each I_j with the interpolating polynomial of $f|_{I_j}$ at the $n+1$ nodes $\left\{x_j^{(i)}, 0 \le i \le n\right\}$.

As a consequence, if $f \in C^{k+1}(a, b)$, then from ([62\)](#page-11-2) within each interval the following error estimate holds

$$
||f - \Pi_h^k f||_{\infty} \le C h^{k+1} \cdot ||f^{(k+1}||_{\infty}.
$$
 (65)

Definition 4.2 (L ² Space)**.** Define the **L 2 function space** as the collection of all functions such that

$$
L^{2}(a,b) = \left\{ f : (a,b) \to \mathbb{R}, \int_{a}^{b} |f(x)|^{2} dx < +\infty \right\}
$$
 (66)

with the norm

$$
||f||_{\mathcal{L}^2(a,b)} = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}.\tag{67}
$$

This defines a norm for $L^2(a, b)$. Note that integral of the function $|f|^2$ is in the Lebesgue sense - in particular, *f* needs not be continuous everywhere. Functions for which the integral is exists and is finite are called square integrable. Functions in L^2 are said to be square integrable.

Theorem 15^{*}. Using Lagrange interpolation on each subinterval I_j using $n+1$ equally spaced nodes $\left\{x_j^{(i)}, 0 \le i \le n\right\}$ with a small *n*. Then Π_n^k is the *piecewise interpolation polynomial*.

Let $0 \leq m \leq k+1$, with $k \geq 1$ and assume that $f^{(m)} \in L^2(a, b)$ for $0 \leq m \leq k+1$ then there exists a positive constant *C*, independent of *h*, such that

$$
\left\| \left(f - \Pi_h^k f \right)^{(m)} \right\|_{\mathcal{L}^2(a,b)} \le C h^{k+1-m} \left\| f^{(k+1)} \right\|_{\mathcal{L}^2(a,b)}.
$$
 (68)

In particular, for $k = 1$ and $m = 0$, or $m = 1$

$$
\left\|f - \Pi_h^1 f\right\|_{\mathcal{L}^2(a,b)} \le C_1 h^2 \left\|f''\right\|_{\mathcal{L}^2(a,b)}\tag{69a}
$$

and

$$
\left\| \left(f - \Pi_h^1 f \right)' \right\|_{\mathcal{L}^2(a,b)} \le C_2 h \left\| f'' \right\|_{\mathcal{L}^2(a,b)} \tag{69b}
$$

for two suitable positive constants C_1 and C_2 .

5 Integration

If $f \in C^0(a, b)$, the quadrature error $E_n(f) = I(f) - I_n(f)$ satisfies

$$
|E_n(f)| \le \int_a^b |f(x) - f_n(x)| \, dx \le (b - a) \|f - f_n\|_{\infty} \tag{70}
$$

Therefore, if for some n , $||f - f_n||_{\infty} < \varepsilon$, then $|E_n(f)| \leq \varepsilon (b - a)$.

The approximation of the function f_n must be easily integrable, which is the case if, for example, $f_n \in \mathbb{P}_n$. In this respect, a natural approach consists of using $f_n = \prod_n f$, the interpolating [Lagrange interpolatory polynomial](#page-11-1) of *f* over a set of $n + 1$ distinct nodes $\{x_i\}$, with $i = 0, \ldots, n$. It follows that the approximation to the integral is

$$
I_n(f) = \sum_{i=0}^n f(x_i) \int_a^b l_i(x) dx
$$
 (71)

where l_i is the characteristic [Lagrange interpolatory polynomial](#page-11-1) of degree n associated with node *xⁱ* . It is called the **Lagrange quadrature formula**, and is a special instance of the following, generalised, quadrature formula

$$
I_n(f) = \sum_{i=0}^n \alpha_i f(x_i)
$$
\n(72)

where the coefficients α_i of the linear combination are given by $\int_a^b l_i(x) dx$. The above equation is a weighted sum of the values of f at the points x_i , for $i = 0, \ldots, n$. These points are said to be the nodes of the quadrature formula, while the $\alpha_i \in \mathbb{R}$ are its *coefficients* or *weights*. Both weights and nodes depend in general on *n*.

Another approximation of the function *f* leads to the **Hermite quadrature formula**

$$
I_n(f) = \sum_{k=0}^{1} \sum_{i=0}^{n} \alpha_{ik} f^{(k)}(x_i)
$$
 (73)

where the weights are now denoted by α_{ik} . This depends on an evaluation of the function and its derivative.

Both the above are *interpolatory quadrature formula*, since the function *f* has been replaced by its interpolating polynomial (Lagrange and Hermite polynomials, respectively).

Define the **degree of exactness** of a quadrature formula as the maximum integer $r \geq 0$ for which

$$
I_n(f) = I(f), \quad \forall f \in \mathbb{P}_r. \tag{74}
$$

Any interpolatory quadrature formula that makes use of $n+1$ distinct nodes has degree of exactness equal to at least *n*. Indeed, if $f \in \mathbb{P}_n$, then $\Pi_n f = f$ and thus $I_n(\Pi_n f) = I(\Pi_n f)$.

The converse statement is also true, that is, a quadrature formula using $n+1$ distinct nodes and having degree of exactness equal at least to *n* is necessarily of interpolatory type.

5.1 Midpoint Rule

$$
I_0 = (b - a)f\left(\frac{a+b}{2}\right). \tag{75}
$$

5.2 Trapezoidal Rule

$$
I_1 = \frac{b-a}{2} (f (a) + f (b)).
$$
 (76)

5.3 Simpson's Rule

$$
I_2 = \frac{b-a}{6} \left(f \left(a \right) + 4f \left(\frac{a+b}{2} \right) + f \left(b \right) \right). \tag{77}
$$

5.4 Gaussian Integration

Gaussian quadrature integrates a function by a suitable choice of both *nodes* and *weights*.

Theorem 16*[∗]* **.** With the exact integral of *f* $I_g(f) = \int_0^1$ *−*1 $f(x)g(x) dx,$ (78)

being $f \in C^0(-1,1)$, consider quadrature rules of the type

$$
I_{n,g}(f) = \sum_{i=0}^{n} \alpha_i f(x_i)
$$
\n(79)

where α_i are to be determined.

For a given $m > 0$, the quadrature $I_{n,q}$ has degree of exactness $d = n + m$ if and only if it is of interpolatory type and the nodal polynomial ω_{n+1} associated with the set of nodes ${x_i}$, is such that

$$
\int_{-1}^{1} \omega_{n+1}(x) p(x) g(x) \, dx = 0, \quad \forall p \in \mathbb{P}_{m-1}.
$$
 (80)

6 Finite Difference Methods

6.1 Green's functions

For a linear differential operator acting on *u*, that is $\mathcal{L}[u(x)]$, which has a differential equation of the form

$$
\mathcal{L}\left[u\left(x\right)\right] = f\left(x\right),\tag{81}
$$

then the **Green's function** for the operator \mathcal{L} , denoted by $G(x, s)$, can be used to solved the differential equation as

$$
u(x) = \int^{x} G(x, s) f(s) ds.
$$
 (82)

6.2 Finite Difference Methods

First discretize the domain and then approximate the governing equation to produce a linear system.

Definition 6.1 (Finite-Difference Quotients)**.** There are approximations to the first-order derivative at x_j

1. **Forward Difference Quotient:**

$$
D_j^+ u = \frac{u_{j+1} - u_j}{h} \tag{83}
$$

2. **Backwards Difference Quotient:**

$$
D_j^- u = \frac{u_j - u_{j-1}}{h} \tag{84}
$$

3. **Central Difference Quotient:**

$$
D_j^0 u = \frac{u_{j+1} - u_{j-1}}{2h}.\tag{85}
$$

With these, approximations to second-order derivatives can be constructed, for example:

$$
D_j^{\pm} u = \frac{D_j^{\pm} u - D_j^{-} u}{h}
$$

=
$$
\frac{\frac{u_{j+1} - u_j}{h} - \frac{u_j - u_{j-1}}{h}}{h}
$$

=
$$
\frac{u_{j+1} - 2u_j + u_{j-1}}{h^2}.
$$
 (86)

Theorem 17 (Errors for Finite-Difference Quotients). The errors for the approximation of the derivatives are given by

1.
$$
u(x_j) - D_j^+ u = -\frac{h}{2} u''(\xi)
$$
 where $\xi \in (x_j, x_{j+1})$
\n2. $u(x_j) - D_j^+ u = \frac{h}{2} u''(\xi)$ where $\xi \in (x_{j-1}, x_j)$
\n3. $u(x_j) - D_j^+ u = -\frac{h^2}{6} u'''(\xi)$ where $\xi \in (x_{j-1}, x_{j+1})$
\n4. $u(x_j) - D_j^+ u = -\frac{h^2}{24} (u^{(4)}(\xi_1) + u^{(4)}(\xi_2))$ where $\xi_1 \in (x_{j-1}, x_j)$ and $\xi_2 \in (x_j, x_{j+1})$.

6.3 Stability Analysis

Let V_h be the set of discrete functions defined on the nodal points x_i and $V_h^0 \subset V_h$ contain the discrete functions $v_h \in V_h$ which vanish at x_0 and x_n , i.e. $v_0 = 0$ and $v_n = 0$.

Lemma 6.2 (*). Let \mathcal{L}_h be the discretization of a linear differential operator which acts on $u_h \in V_h$, i.e. $\mathcal{L}_h[u_h]$. If the **discrete inner product** for both v_h and $w_h \in V_h$ is induced by the inner product, i.e. it is defined as

$$
(v_h, w_h)_h = h \sum_{j=0}^n c_j v_j w_j \tag{87}
$$

where $c_j = 1$ for $j = 1, ..., n - 1$ and $c_0 = c_n = \frac{1}{2}$ and a **norm** is defined as

$$
||v_h||_h = \sqrt{(v_h, v_h)_h}
$$
\n(88)

for a $v_h \in V_h$. Then the operator \mathcal{L}_h is **symmetric**

$$
\left(\mathcal{L}_h\left[v_h\right], w_h\right)_h = \left(v_h, \mathcal{L}_h\left[w_h\right]\right)_h \quad \forall \, w_h, \, v_h \in V_h^0 \tag{89}
$$

and **positive definite**, that is

$$
\left(\mathcal{L}_h\left[v_h\right], v_h\right)_h \ge 0 \quad \forall \, v_h \in V_h^0 \tag{90}
$$

and

$$
\left(\mathcal{L}_h\left[v_h\right], v_h\right)_h = 0 \Longleftrightarrow v_h = 0. \tag{91}
$$

Note that the that the discrete inner product is the [Trapezium Rule,](#page-15-1) so

$$
(w,v) = \int w(x)v(x) dx
$$
\n(92)

i.e. it approximates an integral.

Lemma 6.3 (*). For any
$$
v_h \in V_h
$$

\n
$$
||v_h||_h \le \frac{1}{\sqrt{2}} \left(h \sum_{j=0}^{n-1} \left(\frac{v_{j+1} - v_j}{h} \right)^2 \right)^{1/2}.
$$
\n(93)

6.4 Convergence

The finite difference solution u_h can be characterised by a discrete Green's function. Define $G^k(x) \in V_h^0$ such that

$$
\mathcal{L}_{h}\left[G^{k}\left(x\right)\right] = e^{k}\left(x\right) \tag{94}
$$

where $e^k \in V_h^0$ satisfies $e^k(x_j) = \delta_{kj}$. Then

$$
G^{k}(x_{j}) = hG(x_{j}, x_{k}). \qquad (95)
$$

Theorem 18*[∗]* **.** Let

$$
||v_h||_{h,\infty} = \max_{0 \le j \le n} |v_h(x_j)|
$$
\n(96)

be the *discrete maximum norm*. Assume that $f \in C^2(0,1)$, then the nodal error, given by $e(x_j) = u(x_j) - u_h(x_j)$ satisfies:

$$
||u - u_h||_{h,\infty} \le \frac{h^2}{96} ||f''||_{\infty}.
$$
 (97)

7 Distributions

Denote by $H^s(a, b)$, for $s \geq 1$, the space of the functions $f \in C^{s-1}(a, b)$ such that $f^{(s-1)}$ is continuous and piecewise differentiable, so that $f^{(s)}$ exists unless for a finite number of points and belongs to $L^2(a, b)$. The space $H^s(a, b)$ is known as the Sobolev function space of order *s* and is endowed with the norm $\|\cdot\|_{H^s(a,b)}$ defined as

$$
||f||_{s} = \left(\sum_{k=0}^{s} \left||f^{(k)}\right||_{\mathcal{L}^{2}(a,b)}^{2}\right)^{1/2}.
$$
 (98)

Let

$$
C_0^{\infty} = \{ \varphi \in C^{\infty} \mid \exists a, b \in (0, 1) \text{ such that } \varphi(x) = 0
$$

for $0 \le x < a$ or $b < x \le 1 \}.$

Then for a function $v \in L^2(0,1)$ we say v' is the **weak derivative** (or **distributional derivative**) if

$$
\int_{0}^{1} v' \varphi \, dx = -\int_{0}^{1} v \varphi' \, dx \quad \forall \varphi \in C_0^{\infty} (0,1).
$$
 (99)

Of interest is

$$
H^{1}(0, 1) = \{ v \in L^{2}(0, 1) : v' \in L^{2}(0, 1) \}
$$
 (100)

where v' is the distributional derivative of v , and

$$
H_0^1(0,1) = \{ v \in L^2(0,1) : v' \in L^2(0,1), v(0) = v(1) = 0 \}.
$$
 (101)

On H^1 there is the semi-norm:

$$
|v|_{\mathcal{H}^{1}(0,1)} = \left(\int_{0}^{1} \left\|v'(x)\right\|^{2} \mathrm{d}x\right)^{1/2} = \left\|v'\right\|_{\mathcal{L}^{2}(0,1)}.\tag{102}
$$

To see that it is a semi-norm and not a norm, consider v a constant, so $v' = 0$ thus $|v|_{\text{H}^1(0,1)} = 0$ for $v \neq 0$ and thus by definition is a semi-norm, rather than a norm. Now consider the integral on functions in H_0^1 , it is the case that if the integral is zero so the function is constant, but as it must be zero on the boundaries, so the function is zero and hence a norm.

8 Galerkin Method

Consider the elementary problem:

$$
-(\alpha u')' + \beta u' + \gamma u = f(x) \quad \text{on} \quad (0,1) \quad \text{with} \quad u(0) = u(1) = 0 \tag{103}
$$

where α , β , $\gamma \in C^0(0,1)$ and $\alpha(x) \ge \alpha_0 > 0$ for all $x \in [0,1]$.

Next, on $L^2(0,1)$, define the **scalar product**

$$
(f, v) = \int_{0}^{1} fv \, \mathrm{d}x \tag{104}
$$

and a **bilinear form** $a: (\cdot, \cdot)$ which maps $H_0^1 \times H_0^1 \to \mathbb{R}$

$$
a(u,v) = \int_{0}^{1} (\alpha u'v' + \beta u'v + \gamma uv) dx
$$
 (105)

and consider the **weak form** of the elementary problem:

Find
$$
u \in H_0^1
$$
 such that $a(u, v) = (f, v) \quad \forall v \in H_0^1(0, 1)$. (106)

Theorem 19. The following hold:

- a) Let *u* be a C^2 be a solution of the elementary problem, then $u \in H_0^1$ also solves the weak form.
- b) Let $u \in H_0^1$ be a solution of the weak problem. If and only if $u \in C^2(0,1)$ then *u* also solves the elementary problem.

Theorem 20 (Fundamental Theorem of the Calculus of Variations). Suppose that *f* is integrable on (0*,* 1) and

$$
\int_{0}^{1} \phi f \, dx = 0 \quad \forall \phi \in C_0^{\infty} (0, 1)
$$
\n(107)

then $f = 0$.

Approximate H_0^1 by V_h . The **discrete weak problem** is then:

Find a $u_h \in V_h$ such that $a(u_h, v_h) = (f, v_h) \quad \forall v_h \in V_h$ (108)

Let $\{\varphi_1, \varphi_2, \dots, \varphi_N\}$ be a basis of V_h , then, with $N = \dim V_h$, so that

$$
u_{h}(x) = \sum_{j=1}^{N} u_{j} \varphi_{j}(x).
$$
 (109)

So the problem can be written as: Find $(u_1, \ldots, u_N) \in \mathbb{R}^N$ such that

$$
\sum_{j=1}^{N} u_j a\left(\varphi_j, \varphi_i\right) = \left(f, \varphi_i\right) \quad i = 1, \dots, N. \tag{110}
$$

Denote $a_{ij} = a(\varphi_j, \varphi_i)$ as the elements of the matrix *A*, let $u = (u_1, \ldots, u_N)$ and $f = (f_1, \ldots, f_N)$ be vectors where each entry is given by $f_i = f\varphi_i$, so that the problem is equivalent to solving the linear problem $Au = f$

Theorem 21 (Poincaré–Friedrich Inequality). Let Ω *⊂* R *ⁿ* be contained in *n*-dimensional cube of length *s*, then

$$
||v||_{L^{2}(\Omega)} \leq s |v|_{H_{0}^{1}(\Omega)}.
$$
\n(111)

For functions which are zero on the boundary a simplified form is

$$
\int_{a}^{b} |v(x)|^{2} dx \le C_{p} \int_{a}^{b} |v'(x)|^{2} dx \quad \forall v \in V_{0}
$$
 (112)

Theorem 22*[∗]* **.** Let

$$
C = \frac{1}{\alpha_0} \left(\|\alpha\|_{\infty} + C_p^2 \|\gamma\|_{\infty} \right) \tag{113}
$$

then

$$
|u - u_h|_{H^1(0,1)} \leq C \min_{w_h \in V_h} |u - w_h|_{H^1(0,1)}.
$$
 (114)

Definition 8.1 (Coercivity and Continuity of Bilinear Forms)**.** A bilinear form $a(\cdot, \cdot)$ on *V*, with a norm $\|\cdot\|_V$, then a bilinear form is **coercive** if there exists an $\alpha_0 > 0$ such that

$$
a(v, v) \ge \alpha_0 \|v\|_V^2 \quad \forall v \in V. \tag{115}
$$

A bilinear form is said to be **continuous** if there exists an *M >* 0 such that

$$
|a(u, v)| \le M \|u\|_{V} \|v\|_{V} \quad \forall u, v \in V. \tag{116}
$$

Theorem 23 (Lax–Milgram). If coercive and continuous, and the right hand side (f, v) satisfies the following inequality

$$
|(f, v)| \le K \|v\|_V \quad \forall \, v \in V. \tag{117}
$$

Then the weak and discrete weak form problems admit unique solutions

which satisfy

$$
||u||_{V} \le \frac{K}{\alpha_0} \quad \text{and} \quad ||u_h||_{V} \le \frac{K}{\alpha_0}.\tag{118}
$$

Lemma 8.2 (Céa)**.** It is possible to show that

$$
||u - u_h||_V \le \frac{M}{\alpha_0} \min_{w_h \in V_h} ||u - w_h||_V.
$$
 (119)

9 Finite Element Method

The finite element method (FEM) is a special technique for constructing a subspace *V^h* based on piecewise polynomial interpolation.

Introduce a partition \mathcal{T}_h of $[0,1]$ into *n* subintervals $I_j = [x_j, x_{j+1}], n \geq 2$, of width $h_j = x_{j+1} - x_j$, $j = 0, \ldots, n-1$, with $0 = x_0 < x_1 < \ldots < x_{n-1} < x_n = 1$ and let $h = \max$ $\frac{1}{\tau_h}$ ^{(*h_j*).}

Since functions in $H_0^1(0,1)$ are continuous it makes sense to consider for $k \geq 1$ the family of piecewise polynomials X_h^k introduced in ([64\)](#page-12-1) (where now $[a, b]$ must be replaced by $[0, 1]$).

Any function $v_h \in X_h^k$ is a continuous piecewise polynomial over [0, 1] and its restriction over each interval $I_j \in \mathcal{T}_h$ is a polynomial of degree $\leq k$.

Considering the cases $k = 1$ and $k = 2$, set

$$
V_h = X_h^{k,0} = \left\{ v_h \in X_h^k : v_h(0) = v_h(1) = 0 \right\}.
$$
 (120)

The dimension *N* of the finite element space V_h is equal to $nk-1$. In the following the two cases $k = 1$ and $k = 2$ will be examined.

To assess the accuracy of the Galerkin FEM, first notice that, due to Céa's lemma

$$
\min_{w_h \in V_h} \|u - w_h\|_{\mathcal{H}_0^1(0,1)} \le \|u - \Pi_h^k u\|_{\mathcal{H}_0^1(0,1)} \tag{121}
$$

where $\prod_{h}^{k} u$ is the interpolant of the exact solution $u \in V$ from the weak form of the governing equation. From inequality [\(121](#page-23-1)) estimating the Galerkin approximation error $||u - u_h||_{H_0^1(0,1)}$ is then equivalent to estimating the interpolation error $||u - \Pi_h^k u||_{H_0^1(0,1)}$. When $k = 1$, using ([119\)](#page-22-0) and the bounds on the interpolation errors [\(69](#page-13-0))

$$
||u - u_h||_{\mathcal{H}_0^1(0,1)} \le \frac{M}{\alpha_0} C h ||u||_{\mathcal{H}^2(0,1)} \tag{122}
$$

provided that $u \in H^2(0,1)$. This estimate can be extended to the case $k > 1$ as stated in the following convergence result.

Theorem 24. Let $u \in H_0^1(0,1)$ be the exact solution of

$$
a(u, v) = f(v) \quad \forall v \in H_0^1(0)
$$
 (123)

and let $u_h \in V_h$ be it finite element approximation using a continuous piecewise polynomial of degree less than or equal to *k*, where $k \geq 1$. Furthermore, assume that $u \in H^s(0,1)$ for some $s \geq 2$. Then the error is bounded as

$$
||u - u_h||_{\mathcal{H}_0^1(0,1)} \le \frac{M}{\alpha_0} C h^l ||u||_{\mathcal{H}^{l+1}(0,1)} \tag{124}
$$

where $l = \min(k, s - 1)$. Additionally, under the same assumptions it is

possible to show that

$$
||u - u_h||_{\mathcal{L}^2(0,1)} \le Ch^{l+1} ||u||_{\mathcal{H}^{l+1}(0,1)}.
$$
\n(125)

The error estimate shows that the Galerkin method is *convergent*, that is the approximation error tends to zero as $h \to 0$. The order of convergence is k.