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1 Principles of Numerical Mathematics
Find x such that F (x, d) = 0 for a set of data, d and F , a functional relationship
between x and d.

1.1 Well Posed Problems

Definition 1.1 (Well-Posed Problems). A problem is said to be well-posed
if

• a solution exists,

• the solution is unique,

• the solution’s behaviour changes continuously with the initial condi-
tions.

A problem which does not have these properties is said to be ill-posed.

Definition 1.2 (Relative and Absolute Condition Numbers). The relative
condition number of a problem is given by:

K(d) = sup
δd∈D

‖δx‖ / ‖x‖
‖δd‖ / ‖d‖

. (1)

The absolute condition number is

Kabs(d) = sup
δd∈D

‖δx‖
‖δd‖

. (2)

Consider a well-posed problem, then construct a sequence of approximate
solutions via a sequence of approximate solutions and data, i.e. Fn(xn, dn) = 0

Definition 1.3 (Consistency). If the d is admissible for Fn, a numerical
method Fn(xn, dn) = 0 is consistent if

lim
n→∞

Fn(x, d) → F (x, d). (3)

The method is strongly consistent if Fn(x, d) = 0 for all n ≥ 0.

Given an approximate solution, xn and solution x, the absolute and relative
error are given by

E (xn) = |x− xn| and Erel (xn) =
|x− xn|

|x|
if x 6= 0. (4)
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Definition 1.4 (Stability). Stability means that for any fixed n there ex-
ists a unique solution xn for the data dn and that the solution depends
continuously on the data:

∀ η > 0 ∃K = K (η, dn) such that ‖dn‖ < ν ⇒ ‖xn‖ < K ‖dn‖ . (5)

Definition 1.5 (Relative and Absolute Asymptotic Condition Numbers). If the
sets of functions for Fn(xn, dn) = 0 and F (x, d) = 0 coincide, that is

Kn (dn) = sup
δdn∈Dn

‖δxn‖ / ‖xn‖
‖δdn‖ / ‖dn‖

(6)

and
Kn,abs (dn) = sup

δdn∈Dn

‖δxn‖
‖δdn‖

(7)

then the relative asymptotic condition number is

Knum(d) = lim
k→∞

sup
n≤k

Kn (dn) . (8)

The absolute asymptotic condition number is

Knum
abs (d) = lim

k→∞
sup
n≤k

Kn,abs (dn) . (9)

Definition 1.6 (Convergence). A method is convergent if and only if:

∀ε > 0, ∃n such that ‖x(d)− xn (d+ δdn)‖ ≤ ε. (10)

Theorem 1 (Lax-Ritchmyer). A numerical algorithm converges if and only
if it is consistent and stable.

Definition 1.7 (Inner Product). An inner product (sometimes called a
scalar product) is a function (·, ·) : V × V → F which takes two members
of a vector space V and maps them to a field, F (that is either the real or
complex numbers) and has the following properties:

1. Symmetry: (x, y) = (y, x), indeed, conjugate symmetry (x, y) = (y, x)
(also called Hermitian).

2. Non-negativity: (x, x) > 0 for every x ∈ Rn and (x, x) > 0 if and only
if x = 0, the zero vector.

3. Linearity: (ax+ by, z) = a (x, z) + b (y, z).
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An inner product leads to notions of distance and angle.

Definition 1.8 (Orthogonality). Two vectors are said to be orthogonal if
(x, y) = 0.

Definition 1.9 (Norms and Semi-Norms). An operator ‖·‖ : V → R is called
a norm if

1. Non-negativity:

(i) ‖x‖ ≥ 0 for every x ∈ Rn

(ii) ‖x‖ = 0 if and only if x = 0, the zero vector.

2. Linearity: ‖αx‖ = |α| ‖x‖.

3. Triangle Inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

An operator |·|V : V → R which is linear, satisfies the triangle inequality
but only satisfies the first condition of non-negativity is called a semi-norm.

Inner products can induce norms, that is ‖x‖ =
√
(x, x). The inner product

satisfies the Cauchy–Schwarz inequality

|(x, y)| ≤ ‖x‖ ‖y‖ . (11)

Let p ≥ 1 be a real number. The p-norm (also called ℓp-norm) of vector
x = (x1, . . . , xn) is given by

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

. (12)
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2 Matrix Analysis
Matrix norms can be produced from the vector norms:

‖A‖p,q = sup
x ̸=0

‖Ax‖p
‖x‖q

. (13)

and
‖A‖p = sup

x ̸=0

‖Ax‖p
‖x‖p

. (14)

This is called an induced matrix norm. Note that any induced norm of the
identity matrix is 1.

Without loss of generality, now consider the case when ‖x‖ = 1. There are
three main types of p-norm:

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |, (15)

which is simply the maximum absolute column sum of the matrix. The infinity
norm is given by

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij | (16)

which is simply the maximum absolute row sum of the matrix. In the special
case of p = 2 the induced matrix norm is called the spectral norm.

The spectral norm of a matrix A is the largest singular value of A (i.e., the
square root of the largest eigenvalue of the matrix AHA, where AH denotes the
conjugate transpose of A

‖A‖2 =
√
σmax (AHA) (17)

where σmax(A) represents the largest singular value of the matrix A. Also,

‖A∗A‖2 = ‖AA∗‖2 = ‖A‖22. (18)

Related to the spectral norm is the Frobenius norm given by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2. (19)

it can also be expressed as

=
√
trace (AHA) (20)

where the trace is the sum of the diagonal elements of a matrix, aii, and

=

√√√√min(n,m)∑
i=1

σi (A). (21)
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Theorem 2∗. Let A ∈ Rn×n, then

1. lim
k→∞

Ak = 0 ⇔ ρ (A) < 1. Where ρ (A) is the largest absolute value of
the eigenvalues of A. This is called the spectral radius

2. The geometric series,
∞∑
k=0

Ak is convergent if and only if ρ (A) < 1.

Then in this case, the sum is given by
∞∑
k=0

Ak = (I −A)
−1

. (22)

3. Thus, if ρ (A) < 1, the matrix I −A is invertible and

1

1 + ‖A‖
≤
∥∥∥(I −A)

−1
∥∥∥ ≤ 1

1− ‖A‖
(23)

where ‖·‖ is an induced matrix norm such that ‖A‖ < 1.

Theorem 3∗. Let A ∈ Rn×n be non-singular and let δA ∈ Rn×n be such
that

∥∥A−1
∥∥ ∥∥δA∥∥ < 1. Furthermore, if x ∈ Rn is a solution to Ax = b,

where b ∈ Rn and b 6= 0 and δx is such that

(A+ δA) (x+ δx) = b+ δb (24)

for a δb ∈ Rn, then

(A+ δA) (x+ δx) ≤ K(A)

1−K(A) ‖δA‖2 / ‖A‖2

(
‖δb‖2
‖b‖2

+
‖δA‖2
‖A‖2

)
. (25)

Theorem 4∗. Let A ∈ Rn×n be non-singular and if x ∈ Rn is a solution to
Ax = b, where b ∈ Rn and b 6= 0 and δx is such that

A (x+ δx) = b+ δb (26)

then
1

K(A)

‖δb‖
‖b‖

≤ ‖δx‖
‖x‖

≤ K(A)
‖δb‖
‖b‖

. (27)

Theorem 5. For A ∈ Rn×n and b ∈ Rn, assume ‖δA‖ ≤ γ ‖A‖ and
‖δb‖ ≤ γ ‖b‖ for some γ ∈ R+. Then, if γK(A) < 1, then the following
holds

‖x+ δx‖
‖x‖

≤ 1 + γK(A)

1− γK(A)
(28)
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and
‖δx‖
‖x‖

≤ 2γK(A)

1− γK(A)
. (29)

Theorem 6. For A, C ∈ Rn×n, let R = AC − I. If ‖R‖2 < 1 and

∥∥A−1
∥∥ ≤ ‖C‖

1− ‖R‖
(30)

and
‖R‖
‖A‖

≤
∥∥C −A−1

∥∥ ≤ ‖C‖ ‖R‖
1− ‖R‖

. (31)

In the framework of backwards a priori analysis we can interpret C as being
the inverse of A + δA (for a suitable unknown δA). We are thus assuming
that C(A+ δA) = I. This yields

δA = C−1 −A = −(AC − I)C−1 = −RC−1 (32)

and, as a consequence, if ‖R‖ < 1 it turns out that∥∥δA∥∥ ≤
∥∥R∥∥ ∥∥C−1

∥∥
≤ ‖R‖ ‖A‖

1− ‖R‖
.

(33)
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3 Iterative Solutions for Matrix Inversion
Construct a scheme which solves the linear system Ax = b by generating a
sequence {x(n)} which approximates the solution, x, that is

lim
n→∞

x(n) = x. (34)

So that x = A−1b. Split the matrix A = P −N and solve

Px(n+1) = Bx(n) + f, (35)

where P is called a preconditioner and B = P−1N is the iteration matrix.
An equivalent formulation is given by

x(k+1) = x(k) + P−1r(k) (36)

where
r(k) = b−Ax(k) (37)

is the residual.

Definition 3.1 (Consistency). An iterative method is said to be consistent
if x = Bx+ f , or equivalently,

f = (I −B)A−1b. (38)

Theorem 7. If an iterative scheme is consistent, then if and only if ρ (B) < 1
the method will converge for any initial guess x(0).

Definition 3.2 (Stationary Methods). The formulation can be written as

x(0) = F (0) (A, b) and

x(k+1) = F (k+1)
(
x(k), x(k−1), . . . , x(0), A, b

)
.

(39)

If the functions F (k) are independent of the number of iterations, then it is
said to be stationary.

3.1 Jacobi Method
The Jacobi method decomposes the matrix A into diagonal, lower and upper
triangular matrices A = D + L+ U , and solves

Dx(n+1) = −(L+ U)x(n) + b. (40)

Element-wise this is

x
(k+1)
i =

1

aii

bi −
n∑

j=1,j ̸=i

aijx
(k)
j

 . (41)
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Thus, the iterative scheme is
x(n+1) = −D−1(L+ U)x(n) +D−1b. (42)

As L+ U = A−D, so the iteration matrix can be written as B = I −D−1A.

3.2 Over-Relaxation of Jacobi Method
Also called the weighted Jacobi method. Introduce ω to solve

x
(k+1)
i =

ω

aii

bi −
n∑

j=1,j ̸=i

aijx
(k)
j

+ (1− ω)x(k). (43)

3.3 Successive Over-Relaxation
Introduce ω to solve

(D + ωL)x(n+1) = −((ω − 1)D + ωU)x(n) + ωb. (44)

3.4 Gauss-Seidel
The Gauss-Seidel method decomposes the matrix A into diagonal, lower and
upper triangular matrices A = D + L+ U , and solves

(D + L)x(n+1) = −Ux(n) + b (45)

Theorem 8. 1. If A is strictly diagonally dominant by rows, that is
|aii| >

∑
j ̸=i |aij |, the Jacobi and Gauss-Seidel methods are conver-

gent.

2. If A and 2D −A are symmetric and positive definite, then the Jacobi
method is convergent and the spectral radius of the iteration matrix
B is equal to

ρ (B) = ‖B‖A = ‖B‖D (46)
where ‖·‖A is the energy norm which is induced by the vector norm
‖x‖A =

√
x ·Ax

3. If and only if A is symmetric and positive definite, the
Jacobi over-relaxation method is convergent if

0 < ω <
2

ρ (D−1A)
. (47)

4. If and only if A is symmetric and positive definite, the Gauss-Seidel
method is monotonically convergent with respect to the energy norm
‖·‖A.
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Theorem 9∗. For any ω ∈ R we have ρ (B (ω)) ≥ |ω − 1|. Thus, SOR does
not converge if either ω ≤ 0 or ω ≥ 2.

Theorem 10 (Ostrowski). If A is symmetric and positive definite, then the
SOR method is convergent if and only if 0 < ω < 2. Furthermore, the
convergence is monotonic with respect to the energy norm ‖·‖A.

3.5 Gradient Descent
Consider the function Φ(y) : Rn 7→ R which takes the form:

Φ(y) =
1

2
y ·Ay − y · b. (48)

It can be shown that solving Ax = b is equivalent to minimizing Φ.
If x is a solution to the linear system and minimizes Φ(x) then ∇Φ(x) = 0,

so that Ax− b = ∇Φ(x) = 0.
Now express the function as

Φ(y) = Φ(x+ (y − x))

= Φ(x) +
1

2
‖y − x‖2A . (49)

Where ‖·‖2A is the energy norm from the matrix A. Thus, from equation (49),
it is possible to show that as the Hessian of the system, ∇2Φ = A, is symmetric
and positive-definite and x is a solution to the linear system and hence minimizes
Φ, then if Φ(y) = 0, so y is equal to x. That is the gradient descent provides a
unique solution.

Gradient descent seeks to construct a scheme which updates the vector x(k)

according to
x(k+1) = x(k) + α(k)d(k) (50)

where d(k) is the update direction and α(k) is the step size at the k-th iterate.
Note that in contrast to the methods above, the gradient descent method is

non-stationary as values d and α change at every iterate.
The idea is to let the search direction be the gradient of the function Φ

d(k) = −∇Φ
(
x(k)

)
= −

(
Ax(k) − b

)
= b−Ax(k)

= r(k). (51)
The step size is found by differentiating Φ with respect to α and setting this to
zero, so that

α(k) =
r(k) · r(k)

r(k) ·Ar(k)
. (52)
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Theorem 11∗. If A is symmetric and positive definite, then the gradient-
descent method is convergent for any x(0) and∥∥∥e(k+1)

∥∥∥
A
≤ K(A)− 1

K(A) + 1

∥∥∥e(k)∥∥∥
A
. (53)

If we apply a preconditioner, i.e. multiplying both sides of the linear system
from the left by P−1, then the rescaled linear system is Ãx = b̃, where Ã = P−1A
and b̃ = P−1b. Then the a good preconditioner will reduce the condition number
of the new linear system.

3.6 Conjugate Gradient

Definition 3.3 (Conjugate Vectors). If A is symmetric and positive definite,
let the vectors u and v be A-orthogonal or conjugate if u ·Av = 0.

Lemma 3.4∗. Choosing p(k+1) such that

p(k+1) ·Ap(j) = 0 (54)

for j = 0, . . . , k leads to
p(j) · r(k+1) = 0. (55)

Lemma 3.5∗. Setting

β(k) =
r(k+1) ·Ap(k)

p(k) ·Ap(k)
(56)

and
p(k+1) = r(k+1) − β(k)p(k) (57)

then, for j = 0, . . . , k, yields

p(k+1) ·Ap(j) = 0. (58)

Theorem 12∗. If A ∈ Rn×n is a symmetric and positive definite matrix,
and b ∈ Rn, then the conjugate gradient method yields the exact solution
of Ax = b after n steps.
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4 Interpolation
Numerical treatment of problems often involves the process of discretization -
i.e. going from a continuous function to set of discrete points.
Interpolation provides a way of approximating continuous functions by discrete

data.
Types of functions which can be used are:

• Polynomial interpolation : using a polynomial to approximate the
data,

• Trigonometric interpolation: using polynomials of trigonometric func-
tions,

• Spline interpolation: using a set of piecewise polynomials over subin-
tervals of the data.

Theorem 13∗. Given n + 1 distinct points x0, x1, . . . , xn and n + 1 corres-
ponding values y0, y1, . . . , yn there exists a unique polynomial Πn ∈ Pn such
that for all i = 0, . . . , n

Πn (xi) = yi. (59)

4.1 Lagrange Interpolation

Definition 4.1 (Lagrange Polynomials). The Lagrange form of an inter-
polating polynomial is given by

Πn (x) =

n∑
i=0

yili (x) (60)

where li ∈ Pn such that li (xj) = δij . The polynomials li (x) ∈ Pn for
i = 0, . . . , n, are called characteristic polynomials and are given by

li (x) =

n∏
j=0,j ̸=i

x− xj

xi − xj
. (61)

Theorem 14∗. Let x0, x1, . . . xn be n+1 distinct nodes and let x be a point
belonging to the domain of a given function f . Let Ix be the smallest interval
containing the nodes x0, x1, . . . xn and x and assume that f ∈ Cn+1 (Ix).
Then the interpolation error at the point x is defined and given by

En(x) = f(x)−Πnf(x)

=
f (n+1)(ξ)

(n+ 1)!
ωn+1(x)

(62)
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where f (n+1) is the (n + 1)th derivative of f , ξ ∈ Ix and ωn+1 is the nodal
polynomial of degree n+ 1, which is defined as

ωn+1(x) =

n∏
i=0

(x− xi) . (63)

4.2 Piecewise Lagrange Interpolation
Partition Th of [a, b] into K subintervals Ij = [xj , xj+1] of length hj such that

[a, b] =
K−1⋃
j=0

Ij . Let h = max
0≤j≤K−1

hj , .

For k ≥ 1, introduce on Th the piecewise polynomial space

Xk
h =

{
v ∈ C0(a, b) : v|Ij ∈ Pk (Ij) ∀ Ij ∈ Th

}
(64)

which is the space of the continuous functions over the interval [a, b] whose
restrictions on each Ij are polynomials of degree less than or equal to k.

Then, for any continuous function f in [a, b], the piecewise interpolation
polynomial Πk

hf coincides on each Ij with the interpolating polynomial of f |Ij
at the n+ 1 nodes

{
x
(i)
j , 0 ≤ i ≤ n

}
.

As a consequence, if f ∈ Ck+1(a, b), then from (62) within each interval the
following error estimate holds∥∥f −Πk

hf
∥∥
∞ ≤ Chk+1.

∥∥∥f (k+1
∥∥∥
∞

. (65)

Definition 4.2 (L2 Space). Define the L2 function space as the collection
of all functions such that

L2(a, b) =

{
f : (a, b) → R,

∫ b

a

|f(x)|2 dx < +∞

}
(66)

with the norm

‖f‖L2(a,b) =

(∫ b

a

|f(x)|2dx

)1/2

. (67)

This defines a norm for L2(a, b). Note that integral of the function |f |2 is in
the Lebesgue sense - in particular, f needs not be continuous everywhere.
Functions for which the integral is exists and is finite are called square
integrable. Functions in L2 are said to be square integrable.

Theorem 15∗. Using Lagrange interpolation on each subinterval Ij using
n+1 equally spaced nodes

{
x
(i)
j , 0 ≤ i ≤ n

}
with a small n. Then Πk

n is the
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piecewise interpolation polynomial.
Let 0 ≤ m ≤ k + 1, with k ≥ 1 and assume that f (m) ∈ L2(a, b) for
0 ≤ m ≤ k + 1 then there exists a positive constant C, independent of h,
such that ∥∥∥(f −Πk

hf
)(m)

∥∥∥
L2(a,b)

≤ Chk+1−m
∥∥∥f (k+1)

∥∥∥
L2(a,b)

. (68)

In particular, for k = 1 and m = 0, or m = 1∥∥f −Π1
hf
∥∥
L2(a,b)

≤ C1h
2 ‖f ′′‖L2(a,b) (69a)

and ∥∥∥(f −Π1
hf
)′∥∥∥

L2(a,b)
≤ C2h ‖f ′′‖L2(a,b) (69b)

for two suitable positive constants C1 and C2.
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5 Integration
If f ∈ C0 (a, b), the quadrature error En(f) = I(f)− In(f) satisfies

|En(f)| ≤
∫ b

a

|f(x)− fn(x)| dx ≤ (b− a) ‖f − fn‖∞ (70)

Therefore, if for some n, ‖f − fn‖∞ < ε, then |En(f)| ≤ ε(b− a).
The approximation of the function fn must be easily integrable, which is

the case if, for example, fn ∈ Pn. In this respect, a natural approach consists
of using fn = Πnf , the interpolating Lagrange interpolatory polynomial of f
over a set of n + 1 distinct nodes {xi}, with i = 0, . . . , n. It follows that the
approximation to the integral is

In(f) =

n∑
i=0

f (xi)

∫ b

a

li(x)dx (71)

where li is the characteristic Lagrange interpolatory polynomial of degree n
associated with node xi. It is called the Lagrange quadrature formula, and
is a special instance of the following, generalised, quadrature formula

In(f) =

n∑
i=0

αif (xi) (72)

where the coefficients αi of the linear combination are given by
∫ b

a
li (x) dx.

The above equation is a weighted sum of the values of f at the points xi, for
i = 0, . . . , n. These points are said to be the nodes of the quadrature formula,
while the αi ∈ R are its coefficients or weights. Both weights and nodes depend
in general on n.

Another approximation of the function f leads to the Hermite quadrature
formula

In(f) =

1∑
k=0

n∑
i=0

αikf
(k) (xi) (73)

where the weights are now denoted by αik. This depends on an evaluation of
the function and its derivative.

Both the above are interpolatory quadrature formula, since the function f
has been replaced by its interpolating polynomial (Lagrange and Hermite poly-
nomials, respectively).

Define the degree of exactness of a quadrature formula as the maximum
integer r ≥ 0 for which

In(f) = I(f), ∀f ∈ Pr. (74)
Any interpolatory quadrature formula that makes use of n+1 distinct nodes

has degree of exactness equal to at least n. Indeed, if f ∈ Pn, then Πnf = f
and thus In (Πnf) = I (Πnf).
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The converse statement is also true, that is, a quadrature formula using n+1
distinct nodes and having degree of exactness equal at least to n is necessarily
of interpolatory type.

5.1 Midpoint Rule

I0 = (b− a)f

(
a+ b

2

)
. (75)

5.2 Trapezoidal Rule

I1 =
b− a

2
(f (a) + f (b)) . (76)

5.3 Simpson’s Rule

I2 =
b− a

6

(
f (a) + 4f

(
a+ b

2

)
+ f (b)

)
. (77)

5.4 Gaussian Integration
Gaussian quadrature integrates a function by a suitable choice of both nodes
and weights.

Theorem 16∗. With the exact integral of f

Ig(f) =

1∫
−1

f(x)g(x) dx, (78)

being f ∈ C0 (−1, 1), consider quadrature rules of the type

In,g(f) =

n∑
i=0

αif(xi) (79)

where αi are to be determined.
For a given m > 0, the quadrature In,g has degree of exactness d = n+m
if and only if it is of interpolatory type and the nodal polynomial ωn+1

associated with the set of nodes {xi}, is such that∫ 1

−1

ωn+1(x)p(x)g(x) dx = 0, ∀ p ∈ Pm−1. (80)
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6 Finite Difference Methods

6.1 Green’s functions
For a linear differential operator acting on u, that is L [u (x)], which has a
differential equation of the form

L [u (x)] = f (x) , (81)

then the Green’s function for the operator L, denoted by G (x, s), can be used
to solved the differential equation as

u(x) =

∫ x

G (x, s) f (s) ds. (82)

6.2 Finite Difference Methods
First discretize the domain and then approximate the governing equation to

produce a linear system.

Definition 6.1 (Finite-Difference Quotients). There are approximations to the
first-order derivative at xj

1. Forward Difference Quotient:

D+
j u =

uj+1 − uj

h
(83)

2. Backwards Difference Quotient:

D−
j u =

uj − uj−1

h
(84)

3. Central Difference Quotient:

D0
ju =

uj+1 − uj−1

2h
. (85)

With these, approximations to second-order derivatives can be constructed, for
example:

D±
j u =

D+
j u−D−

j u

h

=

uj+1 − uj

h
− uj − uj−1

h
h

=
uj+1 − 2uj + uj−1

h2
. (86)

17



Theorem 17 (Errors for Finite-Difference Quotients). The errors for the
approximation of the derivatives are given by

1. u (xj)−D+
j u = −h

2
u′′ (ξ) where ξ ∈ (xj , xj+1)

2. u (xj)−D+
j u =

h

2
u′′ (ξ) where ξ ∈ (xj−1, xj)

3. u (xj)−D+
j u = −h2

6
u′′′ (ξ) where ξ ∈ (xj−1, xj+1)

4. u (xj) − D±
j u = −h2

24

(
u(4) (ξ1) + u(4) (ξ2)

)
where ξ1 ∈ (xj−1, xj) and

ξ2 ∈ (xj , xj+1).

6.3 Stability Analysis
Let Vh be the set of discrete functions defined on the nodal points xj and
V 0
h ⊂ Vh contain the discrete functions vh ∈ Vh which vanish at x0 and xn, i.e.

v0 = 0 and vn = 0.

Lemma 6.2 (∗). Let Lh be the discretization of a linear differential operator
which acts on uh ∈ Vh, i.e. Lh [uh]. If the discrete inner product for
both vh and wh ∈ Vh is induced by the inner product, i.e. it is defined as

(vh, wh)h = h

n∑
j=0

cjvjwj (87)

where cj = 1 for j = 1, . . . n− 1 and c0 = cn = 1
2 and a norm is defined as

‖vh‖h =
√
(vh, vh)h (88)

for a vh ∈ Vh. Then the operator Lh is symmetric

(Lh [vh] , wh)h = (vh,Lh [wh])h ∀wh, vh ∈ V 0
h (89)

and positive definite, that is

(Lh [vh] , vh)h ≥ 0 ∀ vh ∈ V 0
h (90)

and
(Lh [vh] , vh)h = 0 ⇐⇒ vh = 0. (91)

Note that the that the discrete inner product is the Trapezium Rule, so

(w, v) =

∫
w(x)v(x) dx (92)
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i.e. it approximates an integral.

Lemma 6.3 (∗). For any vh ∈ Vh

‖vh‖h ≤ 1√
2

h

n−1∑
j=0

(
vj+1 − vj

h

)2
1/2

. (93)

6.4 Convergence
The finite difference solution uh can be characterised by a discrete Green’s
function. Define Gk (x) ∈ V 0

h such that

Lh

[
Gk (x)

]
= ek (x) (94)

where ek ∈ V 0
h satisfies ek (xj) = δkj . Then

Gk (xj) = hG (xj , xk) . (95)

Theorem 18∗. Let
‖vh‖h,∞ = max

0≤j≤n
|vh (xj)| (96)

be the discrete maximum norm. Assume that f ∈ C2 (0, 1), then the nodal
error, given by e (xj) = u (xj)− uh (xj) satisfies:

‖u− uh‖h,∞ ≤ h2

96
‖f ′′‖∞ . (97)
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7 Distributions
Denote by Hs(a, b), for s ≥ 1, the space of the functions f ∈ Cs−1(a, b) such that
f (s−1) is continuous and piecewise differentiable, so that f (s) exists unless for a
finite number of points and belongs to L2(a, b). The space Hs(a, b) is known as
the Sobolev function space of order s and is endowed with the norm ‖·‖Hs(a,b)

defined as

‖f‖s =

(
s∑

k=0

∥∥∥f (k)
∥∥∥2
L2(a,b)

)1/2

. (98)

Let

C∞
0 = {φ ∈ C∞ | ∃ a, b ∈ (0, 1) such that φ(x) = 0

for 0 ≤ x < a or b < x ≤ 1} .

Then for a function v ∈ L2(0, 1) we say v′ is the weak derivative (or distri-
butional derivative) if

1∫
0

v′φ dx = −
1∫

0

vφ′ dx ∀φ ∈ C∞
0 (0, 1) . (99)

Of interest is
H1(0, 1) =

{
v ∈ L2(0, 1) : v′ ∈ L2(0, 1)

}
(100)

where v′ is the distributional derivative of v, and

H1
0 (0, 1) =

{
v ∈ L2(0, 1) : v′ ∈ L2(0, 1), v(0) = v(1) = 0

}
. (101)

On H1 there is the semi-norm:

|v|H1(0,1) =

(∫ 1

0

‖v′ (x)‖2 dx
)1/2

= ‖v′‖L2(0,1) . (102)

To see that it is a semi-norm and not a norm, consider v a constant, so v′ = 0
thus |v|H1(0,1) = 0 for v 6= 0 and thus by definition is a semi-norm, rather than
a norm. Now consider the integral on functions in H1

0 , it is the case that if
the integral is zero so the function is constant, but as it must be zero on the
boundaries, so the function is zero and hence a norm.
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8 Galerkin Method
Consider the elementary problem:

− (αu′)
′
+ βu′ + γu = f (x) on (0, 1) with u(0) = u(1) = 0 (103)

where α, β, γ ∈ C0 (0, 1) and α(x) ≥ α0 > 0 for all x ∈ [0, 1].
Next, on L2(0, 1), define the scalar product

(f, v) =

1∫
0

fv dx (104)

and a bilinear form a : (·, ·) which maps H1
0 ×H1

0 → R

a (u, v) =

1∫
0

(αu′v′ + βu′v + γuv) dx (105)

and consider the weak form of the elementary problem:

Find u ∈ H1
0 such that a (u, v) = (f, v) ∀ v ∈ H1

0 (0, 1) . (106)

Theorem 19. The following hold:

a) Let u be a C2 be a solution of the elementary problem, then u ∈ H1
0

also solves the weak form.

b) Let u ∈ H1
0 be a solution of the weak problem. If and only if

u ∈ C2 (0, 1) then u also solves the elementary problem.

Theorem 20 (Fundamental Theorem of the Calculus of Variations). Sup-
pose that f is integrable on (0, 1) and

1∫
0

ϕf dx = 0 ∀ϕ ∈ C∞
0 (0, 1) (107)

then f = 0.

Approximate H1
0 by Vh. The discrete weak problem is then:

Find a uh ∈ Vh such that a (uh, vh) = (f, vh) ∀ vh ∈ Vh (108)

Let {φ1, φ2, . . . , φN} be a basis of Vh, then, with N = dimVh, so that

uh (x) =

N∑
j=1

ujφj (x) . (109)
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So the problem can be written as: Find (u1, . . . uN ) ∈ RN such that

N∑
j=1

uja (φj , φi) = (f, φi) i = 1, . . . , N. (110)

Denote aij = a (φj , φi) as the elements of the matrix A, let u = (u1, . . . , uN )
and f = (f1, . . . , fN ) be vectors where each entry is given by fi = fφi, so that
the problem is equivalent to solving the linear problem Au = f

Theorem 21 (Poincaré–Friedrich Inequality). Let Ω ⊂ Rn be contained in
n-dimensional cube of length s, then

‖v‖L2(Ω) ≤ s |v|H1
0 (Ω) . (111)

For functions which are zero on the boundary a simplified form is∫ b

a

|v(x)|2 dx ≤ Cp

∫ b

a

|v′ (x)|2 dx ∀ v ∈ V0 (112)

Theorem 22∗. Let

C =
1

α0

(
‖α‖∞ + C2

p ‖γ‖∞
)

(113)

then

|u− uh|H1(0,1) ≤ C min
wh∈Vh

|u− wh|H1(0,1) . (114)

Definition 8.1 (Coercivity and Continuity of Bilinear Forms). A bilinear form
a (·, ·) on V , with a norm ‖·‖V , then a bilinear form is coercive if there
exists an α0 > 0 such that

a(v, v) ≥ α0 ‖v‖2V ∀ v ∈ V. (115)

A bilinear form is said to be continuous if there exists an M > 0 such that

|a (u, v)| ≤ M ‖u‖V ‖v‖V ∀u, v ∈ V. (116)

Theorem 23 (Lax–Milgram). If coercive and continuous, and the right hand
side (f, v) satisfies the following inequality

|(f, v)| ≤ K ‖v‖V ∀ v ∈ V. (117)

Then the weak and discrete weak form problems admit unique solutions
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which satisfy
‖u‖V ≤ K

α0
and ‖uh‖V ≤ K

α0
. (118)

Lemma 8.2 (Céa). It is possible to show that

‖u− uh‖V ≤ M

α0
min

wh∈Vh

‖u− wh‖V . (119)
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9 Finite Element Method
The finite element method (FEM) is a special technique for constructing a sub-
space Vh based on piecewise polynomial interpolation.

Introduce a partition Th of [0, 1] into n subintervals Ij = [xj , xj+1], n ≥ 2, of
width hj = xj+1−xj , j = 0, . . . , n−1, with 0 = x0 < x1 < . . . < xn−1 < xn = 1
and let h = max

Th

(hj).
Since functions in H1

0(0, 1) are continuous it makes sense to consider for
k ≥ 1 the family of piecewise polynomials Xk

h introduced in (64) (where now
[a, b] must be replaced by [0, 1] ).

Any function vh ∈ Xk
h is a continuous piecewise polynomial over [0, 1] and

its restriction over each interval Ij ∈ Th is a polynomial of degree ≤ k.
Considering the cases k = 1 and k = 2, set

Vh = Xk,0
h =

{
vh ∈ Xk

h : vh(0) = vh(1) = 0
}
. (120)

The dimension N of the finite element space Vh is equal to nk − 1. In the
following the two cases k = 1 and k = 2 will be examined.

To assess the accuracy of the Galerkin FEM, first notice that, due to Céa’s
lemma

min
wh∈Vh

‖u− wh‖H1
0(0,1)

≤
∥∥u−Πk

hu
∥∥
H1

0(0,1)
(121)

where Πk
hu is the interpolant of the exact solution u ∈ V from the weak form of

the governing equation. From inequality (121) estimating the Galerkin approx-
imation error ‖u− uh‖H1

0(0,1)
is then equivalent to estimating the interpolation

error
∥∥u−Πk

hu
∥∥
H1

0 (0,1)
. When k = 1, using (119) and the bounds on the inter-

polation errors (69)

‖u− uh‖H1
0(0,1)

≤ M

α0
Ch‖u‖H2(0,1) (122)

provided that u ∈ H2(0, 1). This estimate can be extended to the case k > 1 as
stated in the following convergence result.

Theorem 24. Let u ∈ H1
0 (0, 1) be the exact solution of

a (u, v) = f (v) ∀ v ∈ H1
0 (0) (123)

and let uh ∈ Vh be it finite element approximation using a continuous piece-
wise polynomial of degree less than or equal to k, where k ≥ 1. Furthermore,
assume that u ∈ Hs(0, 1) for some s ≥ 2. Then the error is bounded as

‖u− uh‖H1
0(0,1)

≤ M

α0
Chl‖u‖Hl+1(0,1) (124)

where l = min (k, s− 1). Additionally, under the same assumptions it is
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possible to show that

‖u− uh‖L2(0,1) ≤ Chl+1‖u‖Hl+1(0,1). (125)

The error estimate shows that the Galerkin method is convergent, that is
the approximation error tends to zero as h → 0. The order of convergence is k.
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