Jacobs University Bremen

Spring Semester 2022

Dr. D. Sinden

CA-MATH-804: Numerical Analysis¹

Summary from 4 January 2024

Contents

1	Principles of Numerical Mathematics	2
	1.1 Well Posed Problems	. 2
2	Matrix Analysis	5
3	Iterative Solutions for Matrix Inversion	8
	3.1 Jacobi Method	. 8
	3.2 Over-Relaxation of Jacobi Method	. 9
	3.3 Successive Over-Relaxation	. 9
	3.4 Gauss-Seidel	. 9
	3.5 Gradient Descent	. 10
	3.6 Conjugate Gradient	. 11
4	Interpolation	12
	4.1 Lagrange Interpolation	. 12
	4.2 Piecewise Lagrange Interpolation	. 13
5	Integration	15
	5.1 Midpoint Rule	. 16
	5.2 Trapezoidal Rule	. 16
	5.3 Simpson's Rule	. 16
	5.4 Gaussian Integration	. 16
6	Finite Difference Methods	17
	6.1 Green's functions	. 17
	6.2 Finite Difference Methods	. 17
	6.3 Stability Analysis	. 18
	6.4 Convergence	. 19
7	Distributions	20
8	Galerkin Method	21
9	Finite Element Method	24

 $^1\mathrm{Note}$ that the proofs for theorems marked with an * where presented in class.

1 Principles of Numerical Mathematics

Find x such that F(x, d) = 0 for a set of data, d and F, a functional relationship between x and d.

1.1 Well Posed Problems

Definition 1.1 (Well-Posed Problems). A problem is said to be well-posed if

- a solution exists,
- the solution is unique,
- the solution's behaviour changes continuously with the initial conditions.

A problem which does not have these properties is said to be **ill-posed**.

Definition 1.2 (Relative and Absolute Condition Numbers). The relative condition number of a problem is given by:

$$K(d) = \sup_{\delta d \in \mathcal{D}} \frac{\|\delta x\| / \|x\|}{\|\delta d\| / \|d\|}.$$
 (1)

The absolute condition number is

$$K_{\rm abs}(d) = \sup_{\delta d \in \mathcal{D}} \frac{\|\delta x\|}{\|\delta d\|}.$$
 (2)

Consider a well-posed problem, then construct a sequence of approximate solutions via a sequence of approximate solutions and data, i.e. $F_n(x_n, d_n) = 0$

Definition 1.3 (Consistency). If the *d* is admissible for F_n , a numerical method $F_n(x_n, d_n) = 0$ is **consistent** if

$$\lim_{n \to \infty} F_n(x, d) \to F(x, d).$$
(3)

The method is strongly consistent if $F_n(x, d) = 0$ for all $n \ge 0$.

Given an approximate solution, x_n and solution x, the absolute and relative error are given by

$$E(x_n) = |x - x_n|$$
 and $E_{rel}(x_n) = \frac{|x - x_n|}{|x|}$ if $x \neq 0.$ (4)

Definition 1.4 (Stability). Stability means that for any fixed n there exists a unique solution x_n for the data d_n and that the solution depends continuously on the data:

$$\forall \eta > 0 \quad \exists K = K(\eta, d_n) \quad \text{such that} \quad \|d_n\| < \nu \Rightarrow \|x_n\| < K \|d_n\|.$$
(5)

Definition 1.5 (Relative and Absolute Asymptotic Condition Numbers). If the sets of functions for $F_n(x_n, d_n) = 0$ and F(x, d) = 0 coincide, that is

$$K_n(d_n) = \sup_{\delta d_n \in \mathcal{D}_n} \frac{\|\delta x_n\| / \|x_n\|}{\|\delta d_n\| / \|d_n\|}$$
(6)

and

$$K_{n,\text{abs}}(d_n) = \sup_{\delta d_n \in \mathcal{D}_n} \frac{\|\delta x_n\|}{\|\delta d_n\|} \tag{7}$$

then the **relative asymptotic condition number** is

$$K^{\text{num}}(d) = \lim_{k \to \infty} \sup_{n \le k} K_n(d_n).$$
(8)

The absolute asymptotic condition number is

$$K_{\text{abs}}^{\text{num}}(d) = \lim_{k \to \infty} \sup_{n \le k} K_{n,\text{abs}}(d_n) \,. \tag{9}$$

Definition 1.6 (Convergence). A method is convergent if and only if:

$$\forall \varepsilon > 0, \quad \exists n \quad \text{such that} \quad \|x(d) - x_n (d + \delta d_n)\| \le \varepsilon.$$
 (10)

Theorem 1 (Lax-Ritchmyer). A numerical algorithm converges if and only if it is consistent and stable.

Definition 1.7 (Inner Product). An **inner product** (sometimes called a scalar product) is a function $(\cdot, \cdot) : V \times V \to F$ which takes two members of a vector space V and maps them to a field, F (that is either the real or complex numbers) and has the following properties:

- 1. Symmetry: (x, y) = (y, x), indeed, conjugate symmetry (x, y) = (y, x) (also called Hermitian).
- 2. Non-negativity: (x, x) > 0 for every $x \in \mathbb{R}^n$ and (x, x) > 0 if and only if x = 0, the zero vector.
- 3. Linearity: (ax + by, z) = a(x, z) + b(y, z).

An inner product leads to notions of distance and angle.

Definition 1.8 (Orthogonality). Two vectors are said to be **orthogonal** if (x, y) = 0.

Definition 1.9 (Norms and Semi-Norms). An operator $\|\cdot\| : V \to \mathbb{R}$ is called a **norm** if

- 1. Non-negativity:
 - (i) $||x|| \ge 0$ for every $x \in \mathbb{R}^n$
 - (ii) ||x|| = 0 if and only if x = 0, the zero vector.
- 2. Linearity: $\|\alpha x\| = |\alpha| \|x\|$.
- 3. Triangle Inequality: $||x + y|| \le ||x|| + ||y||$.

An operator $|\cdot|_V : V \to \mathbb{R}$ which is linear, satisfies the triangle inequality but only satisfies the first condition of non-negativity is called a **semi-norm**.

Inner products can induce norms, that is $||x|| = \sqrt{(x,x)}$. The inner product satisfies the Cauchy–Schwarz inequality

$$|(x,y)| \le ||x|| \, ||y|| \,. \tag{11}$$

Let $p \ge 1$ be a real number. The *p***-norm** (also called ℓ_p -norm) of vector $\boldsymbol{x} = (x_1, \ldots, x_n)$ is given by

$$\|\boldsymbol{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}.$$
 (12)

2 Matrix Analysis

Matrix norms can be produced from the vector norms:

$$\|A\|_{p,q} = \sup_{\boldsymbol{x}\neq\boldsymbol{0}} \frac{\|A\boldsymbol{x}\|_{p}}{\|\boldsymbol{x}\|_{q}}.$$
(13)

and

$$|A||_p = \sup_{\boldsymbol{x}\neq\boldsymbol{0}} \frac{\|A\boldsymbol{x}\|_p}{\|\boldsymbol{x}\|_p}.$$
(14)

This is called an **induced matrix norm**. Note that any induced norm of the identity matrix is 1.

Without loss of generality, now consider the case when ||x|| = 1. There are three main types of *p*-norm:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|, \tag{15}$$

which is simply the maximum absolute column sum of the matrix. The **infinity norm** is given by

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$$
(16)

which is simply the maximum absolute row sum of the matrix. In the special case of p = 2 the induced matrix norm is called the **spectral norm**.

The spectral norm of a matrix A is the largest singular value of A (i.e., the square root of the largest eigenvalue of the matrix $A^H A$, where A^H denotes the conjugate transpose of A

$$\|A\|_2 = \sqrt{\sigma_{\max} \left(A^H A\right)} \tag{17}$$

where $\sigma_{\max}(A)$ represents the largest singular value of the matrix A. Also,

$$||A^*A||_2 = ||AA^*||_2 = ||A||_2^2.$$
(18)

Related to the spectral norm is the **Frobenius norm** given by

$$||A||_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2}.$$
(19)

it can also be expressed as

$$=\sqrt{\operatorname{trace}\left(A^{H}A\right)}\tag{20}$$

where the trace is the sum of the diagonal elements of a matrix, a_{ii} , and

$$=\sqrt{\sum_{i=1}^{\min(n,m)}\sigma_i(A)}.$$
(21)

Theorem 2*. Let $A \in \mathbb{R}^{n \times n}$, then

- 1. $\lim_{k \to \infty} A^k = 0 \Leftrightarrow \rho(A) < 1$. Where $\rho(A)$ is the largest absolute value of the eigenvalues of A. This is called the **spectral radius**
- 2. The geometric series, $\sum_{k=0}^{\infty} A^k$ is convergent if and only if $\rho(A) < 1$. Then in this case, the sum is given by

$$\sum_{k=0}^{\infty} A^k = (I - A)^{-1}.$$
 (22)

3. Thus, if $\rho(A) < 1$, the matrix I - A is invertible and

(

$$\frac{1}{1+\|A\|} \le \left\| (I-A)^{-1} \right\| \le \frac{1}{1-\|A\|}$$
(23)

where $\|\cdot\|$ is an induced matrix norm such that $\|A\| < 1$.

Theorem 3*. Let $A \in \mathbb{R}^{n \times n}$ be non-singular and let $\delta A \in \mathbb{R}^{n \times n}$ be such that $||A^{-1}|| ||\delta A|| < 1$. Furthermore, if $x \in \mathbb{R}^n$ is a solution to Ax = b, where $b \in \mathbb{R}^n$ and $b \neq 0$ and δx is such that

$$(A + \delta A) (x + \delta x) = b + \delta b \tag{24}$$

for a $\delta b \in \mathbb{R}^n$, then

$$(A + \delta A) (x + \delta x) \le \frac{K(A)}{1 - K(A) \|\delta A\|_2 / \|A\|_2} \left(\frac{\|\delta b\|_2}{\|b\|_2} + \frac{\|\delta A\|_2}{\|A\|_2}\right).$$
(25)

Theorem 4*. Let $A \in \mathbb{R}^{n \times n}$ be non-singular and if $x \in \mathbb{R}^n$ is a solution to Ax = b, where $b \in \mathbb{R}^n$ and $b \neq 0$ and δx is such that

$$A\left(x+\delta x\right) = b+\delta b \tag{26}$$

then

$$\frac{1}{K(A)} \frac{\|\delta b\|}{\|b\|} \le \frac{\|\delta x\|}{\|x\|} \le K(A) \frac{\|\delta b\|}{\|b\|}.$$
(27)

Theorem 5. For $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$, assume $\|\delta A\| \leq \gamma \|A\|$ and $\|\delta b\| \leq \gamma \|b\|$ for some $\gamma \in \mathbb{R}^+$. Then, if $\gamma K(A) < 1$, then the following holds

$$\frac{\|x + \delta x\|}{\|x\|} \le \frac{1 + \gamma K(A)}{1 - \gamma K(A)} \tag{28}$$

$$\frac{\|\delta x\|}{\|x\|} \le \frac{2\gamma K(A)}{1 - \gamma K(A)}.$$
(29)

Theorem 6. For $A, C \in \mathbb{R}^{n \times n}$, let R = AC - I. If $||R||_2 < 1$ and

$$\|A^{-1}\| \le \frac{\|C\|}{1 - \|R\|} \tag{30}$$

and

$$\frac{\|R\|}{\|A\|} \le \|C - A^{-1}\| \le \frac{\|C\| \, \|R\|}{1 - \|R\|}.\tag{31}$$

In the framework of backwards a priori analysis we can interpret C as being the inverse of $A + \delta A$ (for a suitable unknown δA). We are thus assuming that $C(A + \delta A) = I$. This yields

$$\delta A = C^{-1} - A = -(AC - I)C^{-1} = -RC^{-1}$$
(32)

and, as a consequence, if $\|R\| < 1$ it turns out that

$$\|\delta A\| \le \|R\| \|C^{-1}\| \le \frac{\|R\| \|A\|}{1 - \|R\|}.$$
(33)

and

3 Iterative Solutions for Matrix Inversion

Construct a scheme which solves the linear system Ax = b by generating a sequence $\{x^{(n)}\}$ which approximates the solution, x, that is

$$\lim_{n \to \infty} x^{(n)} = x. \tag{34}$$

So that $x = A^{-1}b$. Split the matrix A = P - N and solve

$$Px^{(n+1)} = Bx^{(n)} + f, (35)$$

where P is called a **preconditioner** and $B = P^{-1}N$ is the **iteration matrix**. An equivalent formulation is given by

$$x^{(k+1)} = x^{(k)} + P^{-1}r^{(k)}$$
(36)

where

$$r^{(k)} = b - Ax^{(k)} \tag{37}$$

is the **residual**.

Definition 3.1 (Consistency). An iterative method is said to be **consistent** if x = Bx + f, or equivalently,

$$f = (I - B)A^{-1}b. (38)$$

Theorem 7. If an iterative scheme is consistent, then if and only if $\rho(B) < 1$ the method will converge for any initial guess $x^{(0)}$.

Definition 3.2 (Stationary Methods). The formulation can be written as

$$x^{(0)} = F^{(0)}(A, b) \text{ and} x^{(k+1)} = F^{(k+1)}\left(x^{(k)}, x^{(k-1)}, \dots, x^{(0)}, A, b\right).$$
(39)

If the functions $F^{(k)}$ are independent of the number of iterations, then it is said to be **stationary**.

3.1 Jacobi Method

The Jacobi method decomposes the matrix A into diagonal, lower and upper triangular matrices A = D + L + U, and solves

$$Dx^{(n+1)} = -(L+U)x^{(n)} + b. (40)$$

Element-wise this is

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right).$$
(41)

Thus, the iterative scheme is

$$x^{(n+1)} = -D^{-1}(L+U)x^{(n)} + D^{-1}b.$$
(42)

As L + U = A - D, so the iteration matrix can be written as $B = I - D^{-1}A$.

3.2 Over-Relaxation of Jacobi Method

Also called the weighted Jacobi method. Introduce ω to solve

$$x_i^{(k+1)} = \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right) + (1 - \omega) x^{(k)}.$$
(43)

3.3 Successive Over-Relaxation

Introduce ω to solve

$$(D + \omega L) x^{(n+1)} = -((\omega - 1)D + \omega U)x^{(n)} + \omega b.$$
(44)

3.4 Gauss-Seidel

The Gauss-Seidel method decomposes the matrix A into diagonal, lower and upper triangular matrices A = D + L + U, and solves

$$(D+L)x^{(n+1)} = -Ux^{(n)} + b (45)$$

- **Theorem 8.** 1. If A is strictly diagonally dominant by rows, that is $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$, the Jacobi and Gauss-Seidel methods are convergent.
 - 2. If A and 2D A are symmetric and positive definite, then the Jacobi method is convergent and the spectral radius of the iteration matrix B is equal to

$$\rho(B) = \|B\|_A = \|B\|_D \tag{46}$$

where $\|\cdot\|_A$ is the energy norm which is induced by the vector norm $\|x\|_A = \sqrt{x\cdot Ax}$

3. If and only if A is symmetric and positive definite, the

Jacobi over-relaxation method is convergent if

$$0 < \omega < \frac{2}{\rho(D^{-1}A)}.$$
 (47)

4. If and only if A is symmetric and positive definite, the Gauss-Seidel method is monotonically convergent with respect to the energy norm $\|\cdot\|_A$.

Theorem 9*. For any $\omega \in \mathbb{R}$ we have $\rho(B(\omega)) \ge |\omega - 1|$. Thus, **SOR** does not converge if either $\omega \le 0$ or $\omega \ge 2$.

Theorem 10 (Ostrowski). If A is symmetric and positive definite, then the SOR method is convergent if and only if $0 < \omega < 2$. Furthermore, the convergence is monotonic with respect to the energy norm $\|\cdot\|_A$.

3.5 Gradient Descent

Consider the function $\Phi(y)$: $\mathbb{R}^n \to \mathbb{R}$ which takes the form:

$$\Phi(y) = \frac{1}{2}y \cdot Ay - y \cdot b.$$
(48)

It can be shown that solving Ax = b is equivalent to minimizing Φ .

If x is a solution to the linear system and minimizes $\Phi(x)$ then $\nabla \Phi(x) = 0$, so that $Ax - b = \nabla \Phi(x) = 0$.

Now express the function as

$$\Phi(y) = \Phi(x + (y - x))$$

= $\Phi(x) + \frac{1}{2} ||y - x||_A^2.$ (49)

Where $\|\cdot\|_A^2$ is the energy norm from the matrix A. Thus, from equation (49), it is possible to show that as the Hessian of the system, $\nabla^2 \Phi = A$, is symmetric and positive-definite and x is a solution to the linear system and hence minimizes Φ , then if $\Phi(y) = 0$, so y is equal to x. That is the gradient descent provides a unique solution.

Gradient descent seeks to construct a scheme which updates the vector $x^{(k)}$ according to

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)} d^{(k)}$$
(50)

where $d^{(k)}$ is the update direction and $\alpha^{(k)}$ is the step size at the k-th iterate.

Note that in contrast to the methods above, the gradient descent method is non-stationary as values d and α change at every iterate.

The idea is to let the search direction be the gradient of the function Φ

$$d^{(k)} = -\nabla \Phi \left(x^{(k)} \right)$$

= $- \left(A x^{(k)} - b \right)$
= $b - A x^{(k)}$
= $r^{(k)}$. (51)

The step size is found by differentiating Φ with respect to α and setting this to zero, so that

$$\alpha^{(k)} = \frac{r^{(k)} \cdot r^{(k)}}{r^{(k)} \cdot Ar^{(k)}}.$$
(52)

Theorem 11*. If A is symmetric and positive definite, then the gradientdescent method is convergent for any $x^{(0)}$ and

$$\left\| e^{(k+1)} \right\|_{A} \le \frac{K(A) - 1}{K(A) + 1} \left\| e^{(k)} \right\|_{A}.$$
(53)

If we apply a preconditioner, i.e. multiplying both sides of the linear system from the left by P^{-1} , then the rescaled linear system is $\tilde{A}x = \tilde{b}$, where $\tilde{A} = P^{-1}A$ and $\tilde{b} = P^{-1}b$. Then the a good preconditioner will reduce the condition number of the new linear system.

3.6 Conjugate Gradient

Definition 3.3 (Conjugate Vectors). If A is symmetric and positive definite, let the vectors u and v be A-orthogonal or conjugate if $u \cdot Av = 0$.

Lemma 3.4*. Choosing $p^{(k+1)}$ such that

$$p^{(k+1)} \cdot Ap^{(j)} = 0 \tag{54}$$

for $j = 0, \ldots, k$ leads to

$$p^{(j)} \cdot r^{(k+1)} = 0. \tag{55}$$

Lemma 3.5*. Setting

$$\beta^{(k)} = \frac{r^{(k+1)} \cdot Ap^{(k)}}{p^{(k)} \cdot Ap^{(k)}}$$
(56)

and

$$p^{(k+1)} = r^{(k+1)} - \beta^{(k)} p^{(k)}$$
(57)

then, for $j = 0, \ldots, k$, yields

$$p^{(k+1)} \cdot Ap^{(j)} = 0. (58)$$

Theorem 12*. If $A \in \mathbb{R}^{n \times n}$ is a symmetric and positive definite matrix, and $b \in \mathbb{R}^n$, then the conjugate gradient method yields the exact solution of Ax = b after n steps.

4 Interpolation

Numerical treatment of problems often involves the process of *discretization* - i.e. going from a continuous function to set of discrete points.

Interpolation provides a way of approximating continuous functions by discrete data.

Types of functions which can be used are:

- **Polynomial interpolation** : using a polynomial to approximate the data,
- **Trigonometric interpolation**: using polynomials of trigonometric functions,
- **Spline interpolation**: using a set of piecewise polynomials over subintervals of the data.

Theorem 13*. Given n + 1 distinct points x_0, x_1, \ldots, x_n and n + 1 corresponding values y_0, y_1, \ldots, y_n there exists a *unique* polynomial $\Pi_n \in \mathbb{P}_n$ such that for all $i = 0, \ldots, n$

$$\Pi_n \left(x_i \right) = y_i. \tag{59}$$

4.1 Lagrange Interpolation

Definition 4.1 (Lagrange Polynomials). The Lagrange form of an interpolating polynomial is given by

$$\Pi_n\left(x\right) = \sum_{i=0}^n y_i l_i\left(x\right) \tag{60}$$

where $l_i \in \mathbb{P}_n$ such that $l_i(x_j) = \delta_{ij}$. The polynomials $l_i(x) \in \mathbb{P}_n$ for $i = 0, \ldots, n$, are called **characteristic polynomials** and are given by

$$l_{i}(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}.$$
(61)

Theorem 14*. Let x_0, x_1, \ldots, x_n be n+1 distinct nodes and let x be a point belonging to the domain of a given function f. Let I_x be the smallest interval containing the nodes x_0, x_1, \ldots, x_n and x and assume that $f \in C^{n+1}(I_x)$. Then the interpolation error at the point x is defined and given by

$$E_n(x) = f(x) - \Pi_n f(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$
(62)

where $f^{(n+1)}$ is the $(n+1)^{\text{th}}$ derivative of $f, \xi \in I_x$ and ω_{n+1} is the nodal polynomial of degree n+1, which is defined as

$$\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i).$$
(63)

4.2**Piecewise Lagrange Interpolation**

Partition \mathcal{T}_h of [a, b] into K subintervals $I_j = [x_j, x_{j+1}]$ of length h_j such that $[a,b] = \bigcup_{j=0}^{K-1} I_j. \text{ Let } h = \max_{0 \le j \le K-1} h_j, .$ For $k \ge 1$, introduce on \mathcal{T}_h the piecewise polynomial space

$$X_{h}^{k} = \left\{ v \in C^{0}(a,b) : \left. v \right|_{I_{j}} \in \mathbb{P}_{k}\left(I_{j}\right) \quad \forall I_{j} \in \mathcal{T}_{h} \right\}$$
(64)

which is the space of the continuous functions over the interval [a, b] whose restrictions on each I_i are polynomials of degree less than or equal to k.

Then, for any continuous function f in [a, b], the piecewise interpolation polynomial $\prod_{h=1}^{k} f$ coincides on each I_j with the interpolating polynomial of $f|_{I_i}$ at the n+1 nodes $\left\{x_j^{(i)}, 0 \le i \le n\right\}$.

As a consequence, if $f \in C^{k+1}(a, b)$, then from (62) within each interval the following error estimate holds

$$\left\|f - \Pi_h^k f\right\|_{\infty} \le Ch^{k+1} \cdot \left\|f^{(k+1)}\right\|_{\infty}.$$
(65)

Definition 4.2 (L^2 Space). Define the L^2 function space as the collection of all functions such that

$$\mathbf{L}^{2}(a,b) = \left\{ f: (a,b) \to \mathbb{R}, \int_{a}^{b} \left| f(x) \right|^{2} \mathrm{d}x < +\infty \right\}$$
(66)

with the norm

$$||f||_{\mathcal{L}^{2}(a,b)} = \left(\int_{a}^{b} |f(x)|^{2} \mathrm{d}x\right)^{1/2}.$$
(67)

This defines a norm for $L^2(a, b)$. Note that integral of the function $|f|^2$ is in the Lebesgue sense - in particular, f needs not be continuous everywhere. Functions for which the integral is exists and is finite are called square integrable. Functions in L^2 are said to be square integrable.

Theorem 15*. Using Lagrange interpolation on each subinterval I_j using n+1 equally spaced nodes $\left\{x_j^{(i)}, 0 \le i \le n\right\}$ with a small n. Then Π_n^k is the

piecewise interpolation polynomial. Let $0 \leq m \leq k+1$, with $k \geq 1$ and assume that $f^{(m)} \in L^2(a,b)$ for $0 \leq m \leq k+1$ then there exists a positive constant C, independent of h, such that

$$\left\| \left(f - \Pi_h^k f \right)^{(m)} \right\|_{L^2(a,b)} \le C h^{k+1-m} \left\| f^{(k+1)} \right\|_{L^2(a,b)}.$$
 (68)

In particular, for k = 1 and m = 0, or m = 1

$$\left\| f - \Pi_{h}^{1} f \right\|_{L^{2}(a,b)} \le C_{1} h^{2} \left\| f'' \right\|_{L^{2}(a,b)}$$
 (69a)

and

$$\left| \left(f - \Pi_h^1 f \right)' \right|_{\mathrm{L}^2(a,b)} \le C_2 h \, \|f''\|_{\mathrm{L}^2(a,b)}$$
 (69b)

for two suitable positive constants C_1 and C_2 .

Integration 5

If $f \in C^0(a, b)$, the quadrature error $E_n(f) = I(f) - I_n(f)$ satisfies

$$|E_n(f)| \le \int_a^b |f(x) - f_n(x)| \, \mathrm{d}x \le (b-a) \, \|f - f_n\|_{\infty} \tag{70}$$

Therefore, if for some n, $||f - f_n||_{\infty} < \varepsilon$, then $|E_n(f)| \le \varepsilon(b - a)$. The approximation of the function f_n must be easily integrable, which is the case if, for example, $f_n \in \mathbb{P}_n$. In this respect, a natural approach consists of using $f_n = \prod_n f$, the interpolating Lagrange interpolatory polynomial of f over a set of n + 1 distinct nodes $\{x_i\}$, with $i = 0, \ldots, n$. It follows that the approximation to the integral is

$$I_{n}(f) = \sum_{i=0}^{n} f(x_{i}) \int_{a}^{b} l_{i}(x) dx$$
(71)

where l_i is the characteristic Lagrange interpolatory polynomial of degree nassociated with node x_i . It is called the Lagrange quadrature formula, and is a special instance of the following, generalised, quadrature formula

$$I_n(f) = \sum_{i=0}^n \alpha_i f(x_i) \tag{72}$$

where the coefficients α_i of the linear combination are given by $\int_a^b l_i(x) dx$. The above equation is a weighted sum of the values of f at the points x_i , for $i = 0, \ldots, n$. These points are said to be the nodes of the quadrature formula, while the $\alpha_i \in \mathbb{R}$ are its *coefficients* or *weights*. Both weights and nodes depend in general on n.

Another approximation of the function f leads to the **Hermite quadrature** formula

$$I_n(f) = \sum_{k=0}^{1} \sum_{i=0}^{n} \alpha_{ik} f^{(k)}(x_i)$$
(73)

where the weights are now denoted by α_{ik} . This depends on an evaluation of the function and its derivative.

Both the above are *interpolatory quadrature formula*, since the function fhas been replaced by its interpolating polynomial (Lagrange and Hermite polynomials, respectively).

Define the **degree of exactness** of a quadrature formula as the maximum integer $r \ge 0$ for which

$$I_n(f) = I(f), \quad \forall f \in \mathbb{P}_r.$$
(74)

Any interpolatory quadrature formula that makes use of n+1 distinct nodes has degree of exactness equal to at least n. Indeed, if $f \in \mathbb{P}_n$, then $\Pi_n f = f$ and thus $I_n(\Pi_n f) = I(\Pi_n f)$.

The converse statement is also true, that is, a quadrature formula using n+1 distinct nodes and having degree of exactness equal at least to n is necessarily of interpolatory type.

5.1 Midpoint Rule

$$I_0 = (b-a)f\left(\frac{a+b}{2}\right). \tag{75}$$

5.2 Trapezoidal Rule

$$I_{1} = \frac{b-a}{2} \left(f(a) + f(b) \right).$$
(76)

5.3 Simpson's Rule

$$I_{2} = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right).$$
(77)

5.4 Gaussian Integration

Gaussian quadrature integrates a function by a suitable choice of both nodes and weights.

Theorem 16*. With the exact integral of f

$$I_g(f) = \int_{-1}^{1} f(x)g(x) \,\mathrm{d}x,$$
(78)

being $f \in C^0(-1,1)$, consider quadrature rules of the type

$$I_{n,g}(f) = \sum_{i=0}^{n} \alpha_i f(x_i) \tag{79}$$

where α_i are to be determined.

For a given m > 0, the quadrature $I_{n,g}$ has degree of exactness d = n + mif and only if it is of interpolatory type and the nodal polynomial ω_{n+1} associated with the set of nodes $\{x_i\}$, is such that

$$\int_{-1}^{1} \omega_{n+1}(x) p(x) g(x) \, \mathrm{d}x = 0, \quad \forall \, p \in \mathbb{P}_{m-1}.$$
(80)

6 Finite Difference Methods

6.1 Green's functions

For a linear differential operator acting on u, that is $\mathcal{L}[u(x)]$, which has a differential equation of the form

$$\mathcal{L}\left[u\left(x\right)\right] = f\left(x\right),\tag{81}$$

then the **Green's function** for the operator \mathcal{L} , denoted by G(x, s), can be used to solved the differential equation as

$$u(x) = \int^{x} G(x,s) f(s) \,\mathrm{d}s.$$
(82)

6.2 Finite Difference Methods

First discretize the domain and then approximate the governing equation to produce a linear system.

Definition 6.1 (Finite-Difference Quotients). There are approximations to the first-order derivative at x_j

1. Forward Difference Quotient:

$$D_{j}^{+}u = \frac{u_{j+1} - u_{j}}{h}$$
(83)

2. Backwards Difference Quotient:

$$D_{j}^{-}u = \frac{u_{j} - u_{j-1}}{h}$$
(84)

3. Central Difference Quotient:

$$D_j^0 u = \frac{u_{j+1} - u_{j-1}}{2h}.$$
(85)

With these, approximations to second-order derivatives can be constructed, for example:

$$D_{j}^{\pm}u = \frac{D_{j}^{+}u - D_{j}^{-}u}{h}$$
$$= \frac{\frac{u_{j+1} - u_{j}}{h} - \frac{u_{j} - u_{j-1}}{h}}{h}$$
$$= \frac{u_{j+1} - 2u_{j} + u_{j-1}}{h^{2}}.$$
(86)

Theorem 17 (Errors for Finite-Difference Quotients). The errors for the approximation of the derivatives are given by

1.
$$u(x_j) - D_j^+ u = -\frac{h}{2}u''(\xi)$$
 where $\xi \in (x_j, x_{j+1})$
2. $u(x_j) - D_j^+ u = \frac{h}{2}u''(\xi)$ where $\xi \in (x_{j-1}, x_j)$
3. $u(x_j) - D_j^+ u = -\frac{h^2}{6}u'''(\xi)$ where $\xi \in (x_{j-1}, x_{j+1})$
4. $u(x_j) - D_j^\pm u = -\frac{h^2}{24}\left(u^{(4)}(\xi_1) + u^{(4)}(\xi_2)\right)$ where $\xi_1 \in (x_{j-1}, x_j)$ and $\xi_2 \in (x_j, x_{j+1}).$

6.3 Stability Analysis

Let V_h be the set of discrete functions defined on the nodal points x_j and $V_h^0 \subset V_h$ contain the discrete functions $v_h \in V_h$ which vanish at x_0 and x_n , i.e. $v_0 = 0$ and $v_n = 0$.

Lemma 6.2 (*). Let \mathcal{L}_h be the discretization of a linear differential operator which acts on $u_h \in V_h$, i.e. $\mathcal{L}_h[u_h]$. If the **discrete inner product** for both v_h and $w_h \in V_h$ is induced by the inner product, i.e. it is defined as

$$(v_h, w_h)_h = h \sum_{j=0}^n c_j v_j w_j$$
 (87)

where $c_j = 1$ for j = 1, ..., n - 1 and $c_0 = c_n = \frac{1}{2}$ and a **norm** is defined as

$$\left\|v_{h}\right\|_{h} = \sqrt{\left(v_{h}, v_{h}\right)_{h}} \tag{88}$$

for a $v_h \in V_h$. Then the operator \mathcal{L}_h is symmetric

(

$$\left(\mathcal{L}_{h}\left[v_{h}\right], w_{h}\right)_{h} = \left(v_{h}, \mathcal{L}_{h}\left[w_{h}\right]\right)_{h} \quad \forall w_{h}, v_{h} \in V_{h}^{0}$$

$$(89)$$

and **positive definite**, that is

$$\mathcal{L}_h[v_h], v_h)_h \ge 0 \quad \forall v_h \in V_h^0 \tag{90}$$

and

$$(\mathcal{L}_h[v_h], v_h)_h = 0 \Longleftrightarrow v_h = 0.$$
(91)

Note that the discrete inner product is the Trapezium Rule, so

$$(w,v) = \int w(x)v(x) \,\mathrm{d}x \tag{92}$$

i.e. it approximates an integral.

Lemma 6.3 (*). For any $v_h \in V_h$ $\|v_h\|_h \le \frac{1}{\sqrt{2}} \left(h \sum_{j=0}^{n-1} \left(\frac{v_{j+1} - v_j}{h} \right)^2 \right)^{1/2}.$ (93)

6.4 Convergence

The finite difference solution u_h can be characterised by a discrete Green's function. Define $G^k\left(x\right)\in V_h^0$ such that

$$\mathcal{L}_{h}\left[G^{k}\left(x\right)\right] = e^{k}\left(x\right) \tag{94}$$

where $e^{k} \in V_{h}^{0}$ satisfies $e^{k}(x_{j}) = \delta_{kj}$. Then

$$G^{k}(x_{j}) = hG(x_{j}, x_{k}).$$

$$(95)$$

Theorem 18*. Let

$$\|v_h\|_{h,\infty} = \max_{0 \le j \le n} |v_h(x_j)|$$
 (96)

be the discrete maximum norm. Assume that $f \in C^{2}(0,1)$, then the nodal error, given by $e(x_{j}) = u(x_{j}) - u_{h}(x_{j})$ satisfies:

$$\|u - u_h\|_{h,\infty} \le \frac{h^2}{96} \|f''\|_{\infty}.$$
(97)

7 Distributions

Denote by $\mathrm{H}^{s}(a, b)$, for $s \geq 1$, the space of the functions $f \in C^{s-1}(a, b)$ such that $f^{(s-1)}$ is continuous and piecewise differentiable, so that $f^{(s)}$ exists unless for a finite number of points and belongs to $\mathrm{L}^{2}(a, b)$. The space $\mathrm{H}^{s}(a, b)$ is known as the Sobolev function space of order s and is endowed with the norm $\|\cdot\|_{H^{s}(a,b)}$ defined as

$$\|f\|_{s} = \left(\sum_{k=0}^{s} \left\|f^{(k)}\right\|_{\mathrm{L}^{2}(a,b)}^{2}\right)^{1/2}.$$
(98)

Let

$$\begin{aligned} C_0^\infty &= \left\{ \varphi \in C^\infty \, | \, \exists \, a, b \in (0,1) \quad \text{such that} \quad \varphi(x) = 0 \\ & \text{for} \quad 0 \leq x < a \quad \text{or} \quad b < x \leq 1 \right\}. \end{aligned}$$

Then for a function $v \in L^2(0,1)$ we say v' is the **weak derivative** (or **distributional derivative**) if

$$\int_{0}^{1} v' \varphi \, \mathrm{d}x = -\int_{0}^{1} v \varphi' \, \mathrm{d}x \quad \forall \varphi \in C_{0}^{\infty}(0,1) \,.$$
(99)

Of interest is

$$H^{1}(0,1) = \left\{ v \in \mathcal{L}^{2}(0,1) : v' \in \mathcal{L}^{2}(0,1) \right\}$$
(100)

where v' is the distributional derivative of v, and

$$H_0^1(0,1) = \left\{ v \in \mathcal{L}^2(0,1) : v' \in \mathcal{L}^2(0,1), \, v(0) = v(1) = 0 \right\}.$$
 (101)

On H^1 there is the semi-norm:

$$|v|_{\mathrm{H}^{1}(0,1)} = \left(\int_{0}^{1} \|v'(x)\|^{2} \,\mathrm{d}x\right)^{1/2} = \|v'\|_{\mathrm{L}^{2}(0,1)}.$$
 (102)

To see that it is a semi-norm and not a norm, consider v a constant, so v' = 0 thus $|v|_{\mathrm{H}^{1}(0,1)} = 0$ for $v \neq 0$ and thus by definition is a semi-norm, rather than a norm. Now consider the integral on functions in H_{0}^{1} , it is the case that if the integral is zero so the function is constant, but as it must be zero on the boundaries, so the function is zero and hence a norm.

8 Galerkin Method

Consider the elementary problem:

$$-(\alpha u')' + \beta u' + \gamma u = f(x) \quad \text{on} \quad (0,1) \quad \text{with} \quad u(0) = u(1) = 0 \quad (103)$$

where $\alpha, \beta, \gamma \in C^0(0, 1)$ and $\alpha(x) \ge \alpha_0 > 0$ for all $x \in [0, 1]$.

Next, on $L^2(0,1)$, define the scalar product

$$(f,v) = \int_{0}^{1} f v \, \mathrm{d}x \tag{104}$$

and a **bilinear form** $a:(\cdot,\cdot)$ which maps $H_0^1 \times H_0^1 \to \mathbb{R}$

$$a(u,v) = \int_{0}^{1} \left(\alpha u'v' + \beta u'v + \gamma uv\right) \mathrm{d}x \tag{105}$$

and consider the **weak form** of the elementary problem:

Find
$$u \in H_0^1$$
 such that $a(u, v) = (f, v) \quad \forall v \in H_0^1(0, 1).$ (106)

Theorem 19. The following hold:

- a) Let u be a C^2 be a solution of the elementary problem, then $u\in H^1_0$ also solves the weak form.
- b) Let $u \in H_0^1$ be a solution of the weak problem. If and only if $u \in C^2(0,1)$ then u also solves the elementary problem.

Theorem 20 (Fundamental Theorem of the Calculus of Variations). Suppose that f is integrable on (0, 1) and

$$\int_{0}^{1} \phi f \, \mathrm{d}x = 0 \quad \forall \phi \in C_0^{\infty}(0, 1)$$
(107)

then f = 0.

Approximate H_0^1 by V_h . The **discrete weak problem** is then:

Find a $u_h \in V_h$ such that $a(u_h, v_h) = (f, v_h) \quad \forall v_h \in V_h$ (108)

Let $\{\varphi_1, \varphi_2, \ldots, \varphi_N\}$ be a basis of V_h , then, with $N = \dim V_h$, so that

$$u_{h}(x) = \sum_{j=1}^{N} u_{j}\varphi_{j}(x).$$
(109)

So the problem can be written as: Find $(u_1, \ldots u_N) \in \mathbb{R}^N$ such that

$$\sum_{j=1}^{N} u_j a\left(\varphi_j, \varphi_i\right) = (f, \varphi_i) \quad i = 1, \dots, N.$$
(110)

Denote $a_{ij} = a(\varphi_j, \varphi_i)$ as the elements of the matrix A, let $u = (u_1, \ldots, u_N)$ and $f = (f_1, \ldots, f_N)$ be vectors where each entry is given by $f_i = f\varphi_i$, so that the problem is equivalent to solving the linear problem Au = f

Theorem 21 (Poincaré–Friedrich Inequality). Let $\Omega \subset \mathbb{R}^n$ be contained in *n*-dimensional cube of length *s*, then

$$\|v\|_{L^{2}(\Omega)} \le s \|v\|_{H^{1}_{0}(\Omega)}.$$
(111)

For functions which are zero on the boundary a simplified form is

$$\int_{a}^{b} |v(x)|^{2} dx \leq C_{p} \int_{a}^{b} |v'(x)|^{2} dx \quad \forall v \in V_{0}$$
(112)

Theorem 22*. Let

$$C = \frac{1}{\alpha_0} \left(\|\alpha\|_{\infty} + C_p^2 \|\gamma\|_{\infty} \right)$$
(113)

then

$$|u - u_h|_{H^1(0,1)} \le C \min_{w_h \in V_h} |u - w_h|_{H^1(0,1)}.$$
(114)

Definition 8.1 (Coercivity and Continuity of Bilinear Forms). A bilinear form $a(\cdot, \cdot)$ on V, with a norm $\|\cdot\|_V$, then a bilinear form is **coercive** if there exists an $\alpha_0 > 0$ such that

$$a(v,v) \ge \alpha_0 \left\| v \right\|_V^2 \quad \forall v \in V.$$
(115)

A bilinear form is said to be **continuous** if there exists an M > 0 such that

$$|a(u,v)| \le M \|u\|_V \|v\|_V \quad \forall u, v \in V.$$
(116)

Theorem 23 (Lax–Milgram). If coercive and continuous, and the right hand side (f, v) satisfies the following inequality

$$|(f,v)| \le K \left\| v \right\|_{V} \quad \forall v \in V.$$

$$(117)$$

Then the weak and discrete weak form problems admit unique solutions

which satisfy

$$\|u\|_V \le \frac{K}{\alpha_0} \quad \text{and} \quad \|u_h\|_V \le \frac{K}{\alpha_0}.$$
(118)

Lemma 8.2 (Céa). It is possible to show that

$$|u - u_h||_V \le \frac{M}{\alpha_0} \min_{w_h \in V_h} ||u - w_h||_V.$$
 (119)

9 Finite Element Method

The finite element method (FEM) is a special technique for constructing a subspace V_h based on piecewise polynomial interpolation.

Introduce a partition \mathcal{T}_h of [0, 1] into n subintervals $I_j = [x_j, x_{j+1}], n \ge 2$, of width $h_j = x_{j+1} - x_j, j = 0, \ldots, n-1$, with $0 = x_0 < x_1 < \ldots < x_{n-1} < x_n = 1$ and let $h = \max_{\mathcal{T}_h} (h_j)$.

Since functions in $H_0^1(0,1)$ are continuous it makes sense to consider for $k \ge 1$ the family of piecewise polynomials X_h^k introduced in (64) (where now [a,b] must be replaced by [0,1]).

Any function $v_h \in X_h^k$ is a continuous piecewise polynomial over [0, 1] and its restriction over each interval $I_j \in \mathcal{T}_h$ is a polynomial of degree $\leq k$.

Considering the cases k = 1 and k = 2, set

$$V_h = X_h^{k,0} = \left\{ v_h \in X_h^k : v_h(0) = v_h(1) = 0 \right\}.$$
 (120)

The dimension N of the finite element space V_h is equal to nk - 1. In the following the two cases k = 1 and k = 2 will be examined.

To assess the accuracy of the Galerkin FEM, first notice that, due to Céa's lemma

$$\min_{w_h \in V_h} \|u - w_h\|_{\mathrm{H}^1_0(0,1)} \le \|u - \Pi_h^k u\|_{\mathrm{H}^1_0(0,1)}$$
(121)

where $\Pi_h^k u$ is the interpolant of the exact solution $u \in V$ from the weak form of the governing equation. From inequality (121) estimating the Galerkin approximation error $||u - u_h||_{H_0^1(0,1)}$ is then equivalent to estimating the interpolation error $||u - \Pi_h^k u||_{H_0^1(0,1)}$. When k = 1, using (119) and the bounds on the interpolation errors (69)

$$\|u - u_h\|_{\mathrm{H}^1_0(0,1)} \le \frac{M}{\alpha_0} Ch \|u\|_{\mathrm{H}^2(0,1)}$$
(122)

provided that $u \in H^2(0, 1)$. This estimate can be extended to the case k > 1 as stated in the following convergence result.

Theorem 24. Let $u \in H_0^1(0,1)$ be the exact solution of

$$a(u,v) = f(v) \quad \forall v \in H_0^1(0)$$

$$(123)$$

and let $u_h \in V_h$ be it finite element approximation using a continuous piecewise polynomial of degree less than or equal to k, where $k \ge 1$. Furthermore, assume that $u \in \mathrm{H}^s(0, 1)$ for some $s \ge 2$. Then the error is bounded as

$$\|u - u_h\|_{\mathrm{H}^1_0(0,1)} \le \frac{M}{\alpha_0} Ch^l \|u\|_{\mathrm{H}^{l+1}(0,1)}$$
(124)

where $l = \min(k, s - 1)$. Additionally, under the same assumptions it is

possible to show that

$$\|u - u_h\|_{\mathbf{L}^2(0,1)} \le Ch^{l+1} \|u\|_{\mathbf{H}^{l+1}(0,1)}.$$
(125)

The error estimate shows that the Galerkin method is *convergent*, that is the approximation error tends to zero as $h \to 0$. The order of convergence is k.