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JTMS-MAT-13: Numerical Methods Contents

Recommended Reading

• J. F. Epperson “An Introduction to Numerical Methods and Analysis”,
Wiley 2nd Edition (2013).

• R. L. Burden and J. D. Faires “Numerical Analysis”, Brooks/Cole
9th Edition (2011).
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JTMS-MAT-13: Numerical Methods 1 Taylor Series

1 Taylor Series
The Taylor series, or the Taylor expansion of a function, is defined as

Definition 1.1 (Taylor Series). For a function f : R 7→ R which is infinitely
differentiable at a point c, the Taylor series of f(c) is given by

∞∑
k=0

f (k) (c)

k!
(x− c)

k

where f (k) =
dkf

dxk
is the kth derivative.

This is a power series, which is convergent for some radius.

Theorem 1 (Taylor’s Theorem). For a function f ∈ Cn+1 ([a, b]), i.e. f is
(n+ 1)-times continuously differentiable in the interval [a, b], then for some
c in the interval, the function can be written as

f (x) =

n∑
k=0

f (k) (c)

k!
(x− c)

k
+

f (n+1) (ξ)

(n+ 1)!
(x− c)

n+1

for some value ξ ∈ [a, b] where

lim
ξ→c

f (n+1) (ξ)

(n+ 1)!
(x− c)

n+1
= 0.
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2 Errors

Definition 2.1 (Absolute and Relative Errors). Let ã be an approximation to
a, then the absolute error is given by

|ã− a| .

If |a| 6= 0, the relative error may be given by∣∣∣∣ ã− a

a

∣∣∣∣ .
The error bound is the magnitude of the admissible error.

Theorem 2. For both addition and subtraction the bounds for the abso-
lute errors are added. In division and multiplication the bounds for the
relative errors are added.

Definition 2.2 (Linear Sensitivity to Uncertainties). If y(x) is a smooth
function, i.e. is differentiable, then |y′| can be interpreted as the linear
sensitivity of y(x) to uncertainties in x.

For functions of several variables, i.e. f : Rn → R, then

|∆y| ≤
n∑

i=1

∣∣∣∣ ∂y∂xi

∣∣∣∣ |∆xi|

where |∆xi| = |x̃i − xi| for an approximation x̃i.
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3 Number Representations

Definition 3.1 (Base Representation). Every number x ∈ N0 can be written
as a unique expansion with respect to base b ∈ N\{1} as

(x)b = a0b
0 + a1b

1 + . . .+ anb
n =

n∑
i=0

aib
i.

A number can be written in a nested form:

(x)b = a0b
0 + a1b

1 + . . . anb
n

= a0 + b (a1 + b (a2 + b (a3 + . . .+ ban) . . .)

with ai < N0 and ai < b, i.e. ai ∈ {0, . . . , b− 1}.
For a real number, x ∈ R, write

x =

n∑
i=0

aib
i +

∞∑
i=1

αib
−i

= an . . . a0 · α1α2 . . .

Algorithm (Euclid).
Euclid’s algorithm can convert an integer x in base 10, i.e. (x)10 into another
base, b, i.e. (x)b.

1. Input (x)10

2. Determine the smallest integer n such that x < bn+1

3. Let y = x. Then for i = n, . . . , 0

ai = y div bi

y = y mod bi

which at each steps provides an ai and updates y.

4. Output as (x)b = anan−1 · · · a0

where div is integer division, and mod is the remainder operator.

There are two issues: finding n maybe difficult and for large values of bi

division maybe computationally costly. Horner’s algorithm seeks to overcome
these issues.
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Algorithm (Horner).
Horner’s algorithm is:

1. Input (x)10

2. Set i = 0

3. Let y = x. Then while y > 0

ai = y mod b
y = y div b
i = i+ 1

which at each steps provides an ai and updates y.

4. Output as (x)b = anan−1 · · · a0

Definition 3.2 (Normalized Floating Point Representations).
Normalized floating point representations with respect to some base b, store
a number x as

x = 0 · a1 . . . ak × bn

where the ai ∈ {0, 1, . . . b− 1} are called the digits, k is the precision and
n is the exponent. The set a1, . . . , ak is called the mantissa. Impose that
a1 6= 0, it makes the representation unique.

Theorem 3. Let x and y be two normalized floating point numbers with
x > y > 0 and base b = 2. If there exists integers p and q ∈ N0 such that

2−p ≤ 1− y

x
≤ 2−q

then, at most p and at least q significant bits (i.e. significant figures written
in base 2) are lost during subtraction.
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4 Linear Systems

Definition 4.1 (Systems of Linear Equations). A system of linear equations
(or a linear system) is a collection of one or more linear equations involving
the same variables. If there are m equations with n unknown variables to
solve for, i.e.

a1,1x1 + a1,2x2 + . . .+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

...
am,1x1 + am,2x2 + · · ·+ am,nxn = bm

then the system of linear equations can be written in matrix form Ax = b,
where

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 , x =


x1

x2

...
xn

 , and b =


b1
b2
...
bm

 ,

with A ∈ Rm×n, x ∈ Rn and b ∈ Rm.

Definition 4.2 (Banded Systems). A banded matrix is a matrix whose non-
zero entries are confined to a diagonal band, comprising the main diagonal
and zero or more diagonals on either side.

Definition 4.3 (Symmetric & Hermitian Systems). A square matrix A is
symmetric if A = AT , that is, ai,j = aj,i for all indices i and j.

A square matrix is said to be Hermitian if the matrix is equal to its con-
jugate transpose, i.e. ai,j = aj,i for all indices i and j. A Hermitian matrix
is written as AH .

Definition 4.4 (Positive Definite Matrices). A matrix, M , is said to be
positive definite if it is symmetric (or Hermitian) and all its eigenvalues
are real and positive.

An equivalent definition is that for any non-zero real column vector z, then
zTMz is always positive.
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Definition 4.5 (Nonsingular Matrices). A matrix is non-singular or invert-
ible if there exists a matrix A−1 such that A−1A = AA−1 = I, where I is
the identity matrix.

Remarks (Properties of Nonsingular Matrices). For a nonsingular matrix, the
following all hold:

• Nonsingular matrix has full rank

• A square matrix is nonsingular if and only if the determinant of the
matrix is non-zero.

• If a matrix is singular, both versions of Gaussian elimination (i.e. with
and without pivoting) will fail due to division by zero, yielding a float-
ing exception error.

Definition 4.6 (The Residual). If x̃ is an approximate solution to the linear
problem Ax = b, then the residual vector is defined as r = Ax̃− b.

4.1 Direct Methods

Algorithm (Gaussian Elimination).
Gaussian elimination is a method to solve systems of linear equations based
on forward elimination (a series of row-wise operations) to convert the mat-
rix, A, to upper triangular form (echelon form), and then back-substitution
to solve the system. The row operations are:

• row swapping

• row scaling, i.e. multiplying by a non-zero scalar

• row addition, i.e. adding a multiple of one row to another

8
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1: procedure Forward Elimination
2: for k = 1 to n− 1 do
3: for i = k + 1 to n do
4: for j = k to n do
5: ai,j = ai,j −

ai,k
ak,k

ak,j

6: end for
7: bi = bi −

ai,k
ak,k

bk

8: end for
9: end for

10: end procedure
11: procedure Back Substitution
12: xn =

bn
an,n

13: for i = n− 1 to 1 do
14: y = bi
15: for j = n to i+ 1 do
16: y = y − ai,jxj

17: end for
18: xi =

y

ai,i
19: end for
20: end procedure

Algorithm (Gaussian Elimination with Scaled Partial Pivoting). A pivot ele-
ment is the element of a matrix which is selected first to do certain calcula-
tions. Pivoting helps reduce errors due to rounding during forward elimin-
ation.
To use partial pivoting to produce a matrix in row-echelon form

1: Find maximal absolute values vector s with entries
si = max j = 1, . . . , n |ai,j |

2: for k = 1 to n− 1 do
3: for i = k to n do
4: Compute

∣∣∣∣ai,ksi
∣∣∣∣

5: end for
6: Find row with largest relative pivot element, denote this as row j
7: Swap rows k and j in the matrix A
8: Swap entries k and j in the vector s
9: Do forward elimination on row k

10: end for

9
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Definition 4.7 (Upper and Lower Triangular Matrices). A square matrix is
said to be a lower triangular matrix if all the elements above the main
diagonal are zero and an upper triangular if all the entries below the main
diagonal are zero.

Theorem 4 (LU-Decomposition). Let A ∈ Rn×n be invertible. Then there
exists a decomposition of A such that A = LU , where L is a lower triangular
matrix and U is an upper triangular matrix, and

L = U−1
1 U−1

2 · · ·U−1
n−1

where each matrix Ui is a matrix which describes the ith step in forward
elimination part of Gaussian elimination.
The upper triangular matrix U is given by

U = Un−1 · · ·U2U1A.

Definition 4.8 (Cholesky-Decomposition). A symmetric, positive definite
matrix can be decomposed as A = L̃L̃T , where L̃ = LD1/2, where D is a
diagonal matrix whose elements di are all positive, so that D1/2 has ele-
ments

√
di.

Algorithm (Cholesky-Decomposition). Given a matrix A, the lower triangular
matrix L̃ can be constructed via

1: for i=1 to n do
2: for j = 1 to i− 1 do
3: y = ai,j
4: for k = 1 to j-1 do
5: y = y − li,klj,k
6: end for
7: li,j = y/lj,j
8: end for
9: y = ai,i

10: for k= 1 to i− 1 do
11: y = y − li,kli,k
12: end for
13: if y ≤ 0 then
14: there is no solution
15: else
16: li,i =

√
y

17: end if
18: end for
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4.2 Indirect Methods
For a non-singular matrix A, consider an iterative scheme of the form

Qxk+1 = (Q−A)xk + b.

This is equivalent to

xk+1 =
(
I −Q−1A

)
xk +Q−1b.

Definition 4.9 (Convergent Methods). A numerical method is said to be con-
vergent if xk → x∗ as k → ∞ where x∗ is the exact solution.

Definition 4.10 (Spectral Radius of a Matrix). The spectral radius of a
square matrix A is defined as

ρ (A) = max {|λ1| , |λ2| , . . . |λn|}

where the λi are the eigenvalues of the matrix.

Theorem 5 (Convergence). The iterative scheme converges if and only if
the spectral radius of the matrix I −Q−1A is less than one, i.e.

ρ
(
I −Q−1A

)
< 1.

Corollary 4.11. A sequence of vectors ek = Mke0 convergences to the zero
vector if and only if the spectral radius of the matrix M is less than one.

Definition 4.12 (Order of Convergence). If a sequence xn converges to r as
n → ∞, then it is said to converge linearly if there exists a µ ∈ (0, 1) such
that

lim
n→∞

|xn+1 − r|
|xn − r|

= µ.

The sequences converges super-linearly if

lim
n→∞

|xn+1 − r|
|xn − r|

= 0

and sub-linearly if

lim
n→∞

|xn+1 − r|
|xn − r|

= 1.

More generally, a sequence converges with order q if there exists a µ > 0
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such that

lim
n→∞

|xn+1 − r|
|xn − r|q

= µ.

Thus a sequence is said to converge quadratically when q = 2 and exhibit
cubic convergence when q = 3.

Definition 4.13 (Richardson Iteration). Let Q = I. Then Richardson iter-
ation computes the sequence of vectors

xk+1 = (I −A)xk + b.

This may converge, depending on A.

The modified Richardson iteration scales Q = ωI, so that

xk+1 = xk + ω (b−Axk) .

Definition 4.14 (Jacobi Iteration). The Jacobi iteration has Q = D, where
D is the diagonal matrix of A, so

xk+1 =
(
I −D−1A

)
xk +D−1b.

Definition 4.15 (Diagonally Dominant Matrices). A matrix A ∈ Rn×n is said
to be diagonally dominant if, for every row, the absolute value of the
diagonal element is greater or equal to the sum of the magnitudes of all
other elements, i.e.

|ai,i| ≥
n∑

j=1,j 6=i

|ai,j | for all i ∈ (1, n).

Theorem 6 (Convergence of Jacobi Scheme). If a matrix A is diagonally
dominant, then the Jacobi scheme converges for any initial guess x0.

Definition 4.16 (Gauss-Seidel Scheme). Let Q = L + D, where L is the
lower triangular matrix of A and D is the diagonal matrix of A, then the
Gauss-Seidel scheme is given by

(D + L)xk+1 = −Uxk + b.

12
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Theorem 7 (Convergence of Gauss-Seidel). If a matrix A is diagonally
dominant, then the Gauss-Seidel scheme converges for any initial guess x0.

Definition 4.17 (Successive Over Relaxation). The scheme uses Q = L+
1

ω
D,

where L is the lower triangular matrix of A and D is the diagonal matrix of
A, thus

(D + ωL)xk+1 = − ((ω − 1)D + ωU)xk + ωb.

Theorem 8 (Convergence of Successive Over Relaxation).
Let A be a symmetric matrix with positive entries on the diagonal and let
ω ∈ (0, 2). Then, if and only if A is positive definite will the method of
successive over relaxation converge.

4.3 Fundamental Theorem of Numerical Analysis

Definition 4.18 (Stability). A numerical method is said to be stable if and
only if any initial error e0 is damped during the iterations, i.e. ‖ek‖ < ‖e0‖.

Note that ‖x‖ is a norm of a vector, such as ‖x‖2 =
√

x2
0 + x2

1 + . . . x2
n.

Definition 4.19 (Consistency). A numerical method is said to be consistent
if any fixed point x∗ of the iteration is a solution to the problem being solved.

For a linear system, a fixed point, x∗, fulfils

x∗ =
(
I −Q−1A

)
x∗ +Q−1b ⇔ Ax∗ = b.

Thus, a fixed point of the iterative scheme is a solution of the linear system.
If the method is stable then

ek =
(
I −Q−1A

)k
e0,

so then
∥∥I −Q−1A

∥∥ < 1 for ‖ek‖ < ‖e0‖. Note that
∥∥I −Q−1A

∥∥ is the norm
of a matrix, which is induced by a vector norm.

Theorem 9 (Fundamental Theorem of Numerical Analysis). A numerical
method is convergent if and only if it is consistent and stable.
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5 Nonlinear Solvers

5.1 Bisection Method

Definition 5.1 (Bisection Method).
The bisection method, when applied in the interval [a, b] to a function
f ∈ C0 ([a, b]) with f(a)f(b) < 0

Bisect the interval into two subintervals [a, c] and [c, b] such that a < c < b.

• If f(c) = 0 or is sufficiently close, then c is a root,

• else, if f(c)f(a) < 0 continue in the interval [a, c],

• else, if f(c)f(b) < 0 continue in the interval [c, b].

Theorem 10.
The bisection method, when applied in the interval [a, b] to a function
f ∈ C0 ([a, b]) with f(a)f(b) < 0 will compute, after n steps, an approx-
imation cn of the root r with error

|r − cn| <
b− a

2n
.

5.2 Newton’s Method

Definition 5.2 (Newton’s Method).
Let a function f ∈ C1 ([a, b]), then for an initial guess x0, Newton’s method
is

xn+1 = xn − f (xn)

f ′ (xn)
.

14
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x

y
f(x)

tangent f ′ (xn)

xnxn+1

Theorem 11.
When Newton’s method converges, it converges to a root, r, of f(x), i.e.
f (r) = 0.

Theorem 12.
Let f ∈ C1 ([a, b]), with

1. f(a)f(b) < 0,

2. f ′ (x) 6= 0 for all x ∈ (a, b),

3. f ′′ (x) exists, is continuous and either f ′′ (x) > 0 or f ′′ (x) < 0 for all
x ∈ (a, b).

Then f(x) = 0 has exactly one root, r, in the interval (a, b) and the sequence
generated by Newton iterations converges to the root when the initial guess
is chosen according to

• if f(a) < 0 and f ′′(a) < 0 or f(a) > 0 and f ′′(a) > 0 then x ∈ [a, r]

or

• if f(a) < 0 and f ′′(a) > 0 or f(a) > 0 and f ′′(a) < 0 then x ∈ [r, b].

The iterates in the sequence will satisfy

|xn − r| < f (xn)

min
x∈[a,b]

|f ′ (x)|
.

15
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Theorem 13.
Let f ∈ C1 ([a, b]), with

1. f(a)f(b) < 0,

2. f ′ (x) 6= 0 for all x ∈ (a, b),

3. f ′′ (x) exists and is continuous, i.e. f (x) ∈ C2 ([a, b]).

If x0 is close enough to the root r, then Newton’s method converges quad-
ratically.

5.3 Secant Method

Definition 5.3 (Secant Method).
The secant method is defined as

xn+1 = xn − f (xn)
xn−1 − xn

f (xn−1)− f (xn)

where the derivative of f is approximated via a Taylor expansion.

Theorem 14.
Let f ∈ C2 ([a, b]), and r ∈ (a, b) such that f (r) = 0 and f ′ (r) 6= 0. Fur-
thermore, let

xn+1 = xn − f (xn)
xn−1 − xn

f (xn−1)− f (xn)

then there exists a δ > 0 such that when |r − x0| < δ and |r − x1| < δ, then
the following holds:

1. lim
n→∞

|r − xn| = 0 ⇔ lim
n→∞

xn = r,

2. |r − xn+1| ≤ µ |r − xn|α with α =
1 +

√
5

2
.

The properties of the three nonlinear solvers can be summarised as follows:

Method Regularity Proximity to r Init. points Func. calls Convergence
Bisection C0 No 2 1 Linear
Newton C2 Yes 1 2 Quadratic
Secant C2 Yes 2 1 Superlinear

16



JTMS-MAT-13: Numerical Methods 5 Nonlinear Solvers

5.4 Systems of Nonlinear Equation

Definition 5.4 (Multi-Dimensional Newton Method). For a vector-valued
function f : Rn → Rn, which takes as an argument the vector

x = (x1, x2 . . . xn) ∈ Rn,

the Jacobian matrix is defined as

J =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

...
...

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


∈ Rn×n

where f1 is the first component of the vector-valued function f .

If the derivatives are evaluated at the vector x, the Jacobian matrix can be
parameterised as J (x). Newton’s method can then be written as a vector
equation,

xm+1 = xm − J−1 (xm) f (xm)

where J−1 (xm) is the inverse of the Jacobian matrix evaluated at the
m-iterate of the approximation vector which is denoted by xm.

In practice, as matrix inversion can be computationally expensive, the sys-
tem

J (xm) (xm+1 − xm) = −f (xm)

is solved for the unknown vector xm+1 − xm, and then xm+1 is found.

17
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6 Interpolation

Definition 6.1 (Interpolating Functions). Given a set of points p0, . . ., pn and
corresponding nodes u0, . . ., un, a function f : R → R with f(ui) = pi, i.e.
maps the nodes to the points, is an called an interpolating function.

Definition 6.2 (Collocation). If the interpolating function is a polynomial, it
can be written as

p (u) =

n∑
i=0

αiϕi (u)

where ϕi (u) are polynomials. Thus for every nodal value j, the polynomial
exactly satisfies

p (uj) =

n∑
i=0

αiϕi (uj) ,

for the weights αi. Thus, solving for all the values of α which fit the inter-
polating function to the data leads to a linear system of the form

Φα = p

where p is the vector defined the polynomial evaluated at the node points,
i.e. p = p (uj) and Φ is the collocation matrix. If there are n data points,
the collocation matrix is given by

Φ =

 ϕ0 (u0) ϕ1 (u0) · · · ϕn (u0)
...

...
ϕ0 (un) · · · · · · ϕn (un)

 .

Thus the weights which define the interpolating polynomial are found as
α = Φ−1p.

The collocation matrix is invertible if and only if the set of functions ϕ are
linearly independent.

When the polynomials are given by ϕi (u) = ui, then Φ is called the Van-
dermonde matrix.

Definition 6.3 (Lagrange Polynomials). The Lagrange form of an inter-
polating polynomial is given by

p (x) =

n∑
i=0

αili (x)

where li ∈ Pn are such that li (xj) = δij . The polynomials li (x) ∈ Pn for

18
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i = 0, . . . , n, are called characteristic polynomials and are given by

li (x) =

n∏
j=0,j 6=i

x− xj

xi − xj
.

Definition 6.4 (Newton Interpolation). Newton interpolation interpolates a
set of points (xi, yi) as

p (x) =

n∑
i=0

αini (x)

using a linear combination of Newton basis polynomials, which are defined
as

n0(x) = 1, ni(x) = (x− x0) (x− x1) · · · (x− xi−1)

=

j−1∏
j=0

(x− xj) .

By construction, α0 = y0, and subsequent terms must be solved by evaluat-
ing the interpolating polynomial at increasing orders, leading to the formula

αi+1 =
yi+1 − pi (xi+1)

ni (xi+1)
.

Algorithm (Aitken’s Algorithm).
Aitken’s algorithm is an iterative process for evaluating Lagrange inter-
polation polynomials at an arbitrary point, u∗, without explicitly construct-
ing them. If the interpolating polynomial is given by p, and is derived from
n data points (ui, yi) for i = 0, . . . , n

p (u) =

n∑
i=0

pni l
n
i (u) .

The interpolation is achieved by constructing a series of polynomials, eval-
uated at the u = u∗, where pki (u) is given by

pk+1
i (u) = pki (u)

(
u− un−k

ui − un−k

)
+ pkn−k (u)

(
1− u− un−k

ui − un−k

)
with initial values p0i = yi, i.e.
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p (u0) = p00

p (u1) = p01

p (u2) = p02

...

p (un) = p0n

p10

p11

...

p1n

p20

p21

where the coefficients are evaluated from left to right, until pn0 is evaluated.

6.1 Piecewise Polynomial Interpolation

Definition 6.5 (Spline Functions). A function s (u) is called a spline of
degree k on the domain [a, b] if s ∈ Ck−1 ([a, b]) and there exists nodes
a = u0 < u1 < . . . < um = b such that s is a polynomial of degree k for
i = 0, . . .m− 1.

Definition 6.6 (B-Splines). A spline is said to be a b-spline if it is of the
form

s (u) =

m∑
i=0

αiNn
i (u)

where Nn are the basis spline functions of degree n with minimal support.
(That is they are positive in the domain and zero outside). The functions
are defined recursively. Let ui be the set of nodes u0, u1, . . . , um, then

N 0
i (u) =

{
1 for ui ≤ u ≤ ui+1

0 else.

and
Nn

i (u) = αn−1
i (u)Nn−1

i (u) +
(
1− αn−1

i+1 (u)
)
Nn−1

i+1 (u)

where
αn−1
i (u) =

u− ui

ui+n − ui

is a local parameter.

Given data with nodes ui and values pi, to interpolate with splines, of order
n, requires solving
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Find s =

m∑
i=0

αiNn
i (u) such that s (ui) = pi for i = 0, . . . ,m

which is matrix form is Φα = p, where the collocation matrix, Φ ∈ R(m+1)×(m+1)

is given by

Φ =

 Nn
0 (u0) · · · Nn

m (u0)
...

...
Nn

0 (um) · · · Nn
m (um)

 .

6.2 Least-Squares Approximation

Definition 6.7 (Least-Squares Approximation). Given a set of points
y = (y0, y1, . . . yn) at nodes xi, seek a continuous function of x, with a given
form characterized by m parameters β = (β0, β1, . . . , βm), i.e. f (x, β), which
approximates the points while minimizing the error, defined by the sum of
the squares

E =

n∑
i=0

(y − f (xi, β))
2
.

The minimum is found when

∂E

∂βj
= 0 for all j = 1, . . .m

i.e.

−2

n∑
i=0

(yi − f (xi, βj))
∂f (xi, β)

∂βj
= 0 for all j = 1, . . .m.

Definition 6.8 (Linear Least-Squares Approximation). If the function f is a
function of the form

y =
m∑
j=1

βjϕj (x)

then the least squares problem can be expressed as

∂E

∂βj
=

m∑
j=1

(
n∑

i=1

ϕj (xi)ϕk (xi)

)
.

Thus, the weights β can be determined by solving the linear system,

ΦΦTβ = Φy,

i.e. β =
(
ΦΦT

)−1
Φy, where Φ is the collocation matrix.
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7 Numerical Differentiation

Definition 7.1 (Finite-Difference Quotients). Consider the approximations to
the first-order derivative:

1. Forward Difference Quotient:

D+
j u =

uj+1 − uj

h

2. Backwards Difference Quotient:

D−
j u =

uj − uj−1

h

3. Central Difference Quotient:

D0
ju =

uj+1 − uj−1

2h

The forward and backwards difference schemes are first order approxim-
ations to the derivative. The central difference scheme is a second order
accurate approximation.

Definition 7.2 (Richardson Extrapolation). This is a method for deriving
higher order approximations for derivatives from lower order approxima-
tions. Consider a first-order approximation to the derivative, ϕ (h), such as
backwards or forwards differencing, then

f ′ (x) = ϕ (h) + a2h
2 + a3h

3 + . . .

Now evaluate the derivative at h = h/2, so that

f ′ (x) = ϕ

(
h

2

)
+ a2

(
h

2

)2

+ a3

(
h

2

)3

+ . . .

Combining the two terms so that the low order term cancel, i.e. via
f ′ (x)− 4f ′ (x), then a better approximation can be found as

f ′ (x) = ϕ (h)− 4ϕ

(
h

2

)
+O

(
h3
)
.

The process can also be applied to second order accurate schemes, such as
central differencing, to produce more accurate approximations, as well as to
higher order derivatives.
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Definition 7.3 (Higher Order Derivatives). From the Taylor expansion of
f(x+ h) and f(x− h), the second order derivative can be expressed as

f ′′(x) =
f(x− h)− 2f(x) + f(x+ h)

h2
+O

(
h2
)
.

x

y

x− h x x+ h

exact
backward

forward

central
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8 Numerical Integration

Definition 8.1 (Riemann Sum). Create a partition, p, of the domain of in-
tegration: define n+ 1 nodes a = x0 < x1 < . . . < xn = b, so that there are
n sub-intervals [xi, xi+1]. Then approximate the area under the curve by
summing the areas in each subinterval defined as

b∫
a

f (x) dx ≈
n−1∑
i=0

(xi+1 − xi) f (x∗) , x∗ ∈ [xi, xi+1] .

If f is continuous, the value of x∗
i may be chosen arbitrarily in the interval

[xi, xi+1]. Then the lower and upper Riemann sums are given by

L (f, p) =

n−1∑
i=0

(xi+1 − xi)mi where mi = min
x∈[xi,xi+1]

f (x)

U (f, p) =

n−1∑
i=0

(xi+1 − xi)Mi where Mi = max
x∈[xi,xi+1]

f (x)

so that bounds for the value of the quadrature can be made

L (f, p) ≤
b∫

a

f (x) dx ≤ U (f, p) .

Additionally, the left and right Riemann sums are given by

n−1∑
i=0

(xi+1 − xi) f (xi−1) ,

n−1∑
i=0

(xi+1 − xi) f (xi) .

Definition 8.2 (Trapezoidal Rule). Rather than rectangles, use trapezoids to
approximate the integral in a sub domain

b∫
a

f (x) dx ≈
n−1∑
i=0

(xi+1 − xi)
f (xi) + f (xi+1)

2
.

If the nodes of the partition are equally spaced, so that h = xi+1 − xi, then
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1 2 x

1

2

3

4

y

0

(a) Lower Riemann Sum

1 2 x

1

2

3

4

y

0

(b) Upper Riemann Sum

the formula can be given by

T (f, p) =
h

2
(f (x0) + f (xn)) + h

n−2∑
i=1

f (xi) .

Theorem 15 (Error for Trapezoidal Rule). Let f ∈ C2 ([a, b]) and p be
equidistant partition of [a, b], with h = xi+1 − xi. The error can be shown
to have the form:∣∣∣∣∣∣

b∫
a

f (x) dx− T (f, p)

∣∣∣∣∣∣ = a2h
2 + a4h

4 + . . .

that is, the error terms are even powers of the discretization. The error for
the trapezium rule is∣∣∣∣∣∣

b∫
a

f (x) dx− T (f, p)

∣∣∣∣∣∣ = 1

12

∣∣(b− a)h2f ′′ (ξ)
∣∣

for a ξ ∈ (a, b).
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x

y

y = f(x)

x0 x1 x2 xn−1 xn

a b

Definition 8.3 (Simpson’s Rule). The integral is approximated as

b∫
a

f (x) dx ≈ b− a

6

(
f (a) + 4f

(
a+ b

2

)
+ f (b)

)
.

Simpson’s rule uses interpolation with quadratic polynomials. It can be ap-
plied in a composite manner, i.e. on many subdomains. It has an asymptotic
error of O

(
h4
)
.

Algorithm (Romberg Algorithm). Romberg’s method uses the Trapezoidal
Rule and then Richardson Extrapolation to estimate integrals.

First consider a sequence of partitions, pi, of equal spacing given
by hi =

b− a

2i
for i = 0, . . . , n, which yield a sequence of integrals

R0
i = Ti (f, pi). Refinements of the integrals can then be produced by

Richardson Extrapolation.
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R0
0

R0
1

R0
2

...

R0
n

R0
1

R0
2

Thus, consider the two integrals

b∫
a

f (x) dx = R0
i−1 + a2h

2 + a4h
4 + . . .

b∫
a

f (x) dx = R0
i + a2

(
h

2

)2

+ a4

(
h

2

)4

+ . . .

Note that there no odd terms in the error. Then, define the next set of
refinements as

R1
i =

1

3

(
4R0

i −R0
i−1

)
.

which has an error O
(
h4
)
. The extrapolated values are equivalent to in-

tegrals approximated by Simpson’s rule. The recurrence formula can be
derived

Rm
i =

1

4m − 1

(
4mRm−1

i −Rm−1
i−1

)
.

8.1 Gauss Quadrature
Generalise the quadrature formula so that an integral is approximated as

In[f ] =

n∑
i=0

αif (xi)

The above equation is a weighted sum of the values of f at the points xi, for
i = 0, . . . , n. These points are said to be the nodes of the quadrature formula,
while the αi ∈ R are its coefficients or weights. Both weights and nodes depend
in general on n.

• Can the weights be chosen such that the error in an integral is minimized?
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• Furthermore, can the nodes be chosen such that the integral can be im-
proved?

Definition 8.4 (Orthogonal functions). Two real-valued functions f(x) and
g(x) are said to be orthogonal if

〈f, g〉 =
∫ b

a

f(x)g(x) dx = 0.

Theorem 16 (Gaussian Quadrature). Let q (x) be a non-trivial polynomial
of degree n+ 1 such that

1. it has n+ 1 distinct roots, denoted as xi, in [a, b],

2. the polynomial satisfies∫ b

a

xkq (x) dx = 0 for k = 0, . . . , n.

i.e. is orthogonal to xk.

Then, denote the integral as

I [f ] =

∫ b

a

f (x) dx =

n∑
i=0

Aif (xi)

with Ai =
∫ b

a
Li (x) dx for all polynomials f (x) of degree less than or equal

to 2n+ 1. The integral I [f ] integrates all polynomials of degree 2n+ 1
exactly.
The degree of exactness of I [f ] is 2n+ 1.

Definition 8.5 (Gauss-Legendre Quadrature). The Legendre polynomials are
a set of orthogonal polynomials where∫ 1

−1

Pm(x)Pn(x) dx = 0 for n 6= m.

and P0 = 1. Thus, P1 = x, P2 =
(
3x2 − 1

)
/2 etc. The Legendre polynomi-

als obey a recursive formula:

Pn =
2n− 1

n
xPn−1(x)−

n− 1

n
Pn−2(x), for n ≥ 2.

Gauss-Legendre quadrature uses the roots of the Legendre polynomials as
the nodes for integration, and weights found by equating the quadrature
expressions with the exact integrals for f = 1, x, x2.
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The domain of integration can be scaled via the invertible transformation
x =

b− a

2
t+

a+ b

2
, so that

∫ b

a

f(x) dx =
b− a

2

∫ 1

−1

f

(
b− a

2
t+

a+ b

2

)
dt.
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9 Differential Equations

9.1 Finite Difference Methods for Differential Equations
Solutions to differential equations are functions.

Definition 9.1 (Ordinary Differential Equations). An ordinary differential
equation (ODE) is an equation that involves one of more derivatives of a
function of a single variable.

For example, with only the first derivative y′ (t) = f (y (t) , t).

Definition 9.2 (Initial Value Problems). An initial value problem (IVP)
is given by an ordinary differential equation of the form y′ (t) = f (y (t) , t)
and initial value y (a) = ya for the unknown function y (t), with t ≥ a.

Often a = 0, and the initial condition is denoted by y(0) = y0.

Definition 9.3 (One-step methods). A numerical method for approximating
the solution to a differential equation is called a one-step method if the
solution at time step tn+1, denoted by un+1, depends only on the previous
one, tn, where tn+1 = tn + h, for some small increment h = ∆t.

Definition 9.4 (Forward Euler). This approximates the derivative through a
first-order forward difference approximation of the first-order derivative, i.e.
for un, the solution u at tn, the computed solution to a differential equation
u̇ = f (u), evolves according to

un+1 = un + hfn

where fn = f (un, tn) and h = tn+1 − tn. The error is O
(
h2
)
.

Definition 9.5 (Backward Euler Method). This method uses the backward
finite difference approximation of the first-order derivative, so that the solu-
tion is computed via

un+1 = un + hfn+1

where fn+1 = f (un+1, tn+1).

Definition 9.6 (Crank-Nicolson Method). This method is given by

un+1 = un +
h

2
(fn + fn+1) .
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Definition 9.7 (Heun’s Method). This method is given by

un+1 = un +
h

2
(fn + f (un + hfn, tn+1)) .

Alternatively, one-step methods can be considered to be integrators

y (t+ h) = y (t) +

∫ t+h

t

f (y (τ) , τ) dτ.

Thus, the forward Euler method is equivalent to the left Riemann sum, backward
Euler is equivalent to the right right Riemann sum and the Crank-Nicolson is
the trapezoidal rule.

Definition 9.8 (Implicit and Explicit Schemes). A numerical method is said
to be explicit if an approximation un+1 can be calculated directly from
already computed values ui, i < n. Otherwise, the method is said to be
implicit.

Often, implicit methods require, at each step, the solution of a nonlinear
equation for computing un+1.

Both the Forward Euler and Heun’s method are explicit, whereas the Back-
ward Euler and Crank-Nicolson methods are implicit.

Huen’s method can be interpreted as the Crank-Nicolson method with the
approximation un+1 ≈ un + hfn replacing the explicit fn+1 term, which de-
pends on un+1.

9.2 Analysis of One-Step Methods
Any explicit one-step method has the form

un+1 = un + hΦ(tn, un, fn, h)

with Φ the increment function.

Definition 9.9 (Hölder & Lipshitz Continuity). A function f is Hölder con-
tinuous if there exists real constants C > 0 and α ≤ 0 such that

|f (x)− f (y)| ≤ C‖x− y‖α

for all x and y. If α = 1 the function is said to be Lipshitz continuous.

Definition 9.10 (Consistent Schemes). For the exact solution to the differ-
ential equation, y (tn) = yn, the solution can be written as

yn+1 = yn + hΦ(tn, y(tn), fn, h) + εn
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so that
τn =

yn+1 − yn
h

− Φ(tn, y(tn), fn, h)

where εn = hτn for a τn = τn (h) is defined as the local truncation error
at step n.

The consistency error is given by τ = maxn |τn|.

A method is said to be consistent if

lim
h→0

Φ = f.

This means the increment function is a good approximation to the differential
equation as the step size tends to zero.

Definition 9.11 (Order). A one-step method is of order p ∈ N, if for all
t ∈ [0, T ], the solution satisfies the condition that τ (h) = O (hp) as h → 0.

Definition 9.12 (Zero Stable Methods). A method of the form

un+1 = un + hΦ(tn, un, fn, h)

is called zero-stable if there exists both a maximal step size, hmax and a
constant, C, such that for all h ∈ [0, hmax] and for ε > 0, then the following
holds:
If, for all time-steps 0 ≤ n ≤ N , there exists a δn ≤ ε and

zn+1 = zn + hΦ(tn, zn, fn (zn, tn) , h) + δn+1

and z0 = y0 + δ0, then

|zn − un| ≤ Cε for 0 ≤ n ≤ N.

Zero stability means that small perturbations in the computations lead to
small perturbations in the approximations.

Theorem 17. If the increment function is Lipshitz continuous for yn for any
h and tn, then the one-step method is zero-stable.

Theorem 18. If the increment function Φ is

(i) Lipshitz continuous for un for any h and tn+1

and
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(ii) the method is consistent

then
lim
h→0

|yn − un| = 0.

Also, if the method is of order p and if |y0 − u0| = O (hp) as h → 0, the
convergence is of order p.

Definition 9.13 (Absolute Stability). A numerical scheme for approximating
the solution to the linear differential equation y′ (t) = λy (t) with λ ∈ C
and initial condition y0 = 1 is said to be absolutely stable if |un| → 0 as
n → ∞, when Re (λ) < 0, for a fixed value of h.

Definition 9.14 (Well-posed). A differential equation is said to be well-
posed if

• a unique solution exists for any initial conditions and

• the solution’s behaviour changes continuously with the initial condi-
tions.

A differential equation which does not have these properties is said to be
ill-posed.

Theorem 19 (Lax Equivalence theorem). The Lax Equivalence theorem or
Lax–Richtmyer theorem is the equivalent form of the Fundamental Theorem
of Numerical Analysis for differential equations, which states that for a con-
sistent finite difference method for a well-posed linear initial value problem,
the method is convergent if and only if it is stable.

Runge-Kutta Schemes And Multi-Step Schemes

Definition 9.15 (Runge-Kutta Methods). If an ordinary differential equation
is given by ẏ = f (y, t), then a Runge-Kutta scheme takes the form

un+1 = un + hF (tn, un, h; f)

where F is an increment function given by

F (tn, un, h; f) =

s∑
i=1

biki,

with ki defined as
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ki = f

un + h

s∑
j=1

ai,jkj , tn + cih

 for i = 1, . . . , s

where s is referred to as the number of stages of the method.

Thus, an s-stage scheme is characterised by coefficients bi, ci and ai,j . If the
matrix defined by the elements ai,j is lower triangular, i.e. ai,j = 0 for all i ≤ j,
then each ki can be computed explicitly in terms of the previous coefficients
k1, . . . , ki−1. Thus, such schemes are called explicit, otherwise they are said to
be implicit.

The local truncation error is defined as

hτn+1 (h) = u (tn+1)− u (tn)− hF (tn, un, h; f) .

It can be shown that τ (h) = max |τn+1 (h)| → 0 as h → 0 if and only if∑s
i=1 bi = 1.
A Runge-Kutta method is of order p ≥ 1 if τ (h) = O (hp) as h → 0.
The components of a Runge-Kutta scheme are expressed in a Butcher array

c1 a1,1 . . . a1,s
...

...
. . .

...
cs as,1 . . . as,s

b1 . . . bs

The order of an s-stage explicit Runge-Kutta method cannot be greater
than s. Additionally, there does not exist a s-stage explicit Runge-Kutta method
with order s if s ≥ 5.

The order of an s-stage implicit Runge-Kutta method cannot be greater
than 2s.

The most common form of the Runge-Kutta method is the fourth order
Runge-Kutta method (RK4). It takes the form:

un+1 = un +
h

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = f (un, tn) ,

k2 = f

(
un +

h

2
k1, tn +

h

2

)
,

k3 = f

(
un +

h

2
k2, tn +

h

2

)
,

k4 = f (un + hk3, tn + h) .
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9.3 Partial Differential Equations

Definition 9.16 (Partial Differential Equations). A partial differential equa-
tion is a relation involving an unknown function of several free variables and
partial derivatives with respect to these variables.

A partial differential equation is said to be linear if it only contains linear
terms of the unknown and its derivatives. For example, a second-order linear
partial differential equation for an unknown function u(x, t) has the form

a1uxx + a2uxt + a3utt + a3ux + a4ut + a5u = f(x, t).

where uxx =
∂2u

∂x2
.

For finite-difference schemes, all partial derivatives must be approximated
by discretized operators.
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